Species comparison of the physical properties of loblolly and slash pine wood and bark

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Forest Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>cjfr-2017-0091.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>13-Jun-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Eberhardt, Thomas; USDA Forest Service, Forest Products Laboratory Dahlen, Joseph; University of Georgia, Warnell School of Forestry and Natural Resources Schimleck, Laurie; Oregon State University, College of Forestry</td>
</tr>
<tr>
<td>Keyword:</td>
<td>bark thickness, southern pine, specific gravity, wood quality, yield</td>
</tr>
<tr>
<td>Is the invited manuscript for consideration in a Special Issue?:</td>
<td>N/A</td>
</tr>
</tbody>
</table>

https://mc06.manuscriptcentral.com/cjfr-pubs
SPECIES COMPARISON OF THE PHYSICAL PROPERTIES
OF LOBLOLLY AND SLASH PINE WOOD AND BARK

Thomas L. Eberhardt\(^1\)*, Joseph Dahlen\(^2\), Laurence Schimleck\(^3\)

\(^1\)USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726, USA; teberhardt@fs.fed.us

\(^2\)University of Georgia, Warnell School of Forestry and Natural Resources, 180 E Green Street, Athens, GA 30602, USA; jdahlen@uga.edu

\(^3\)Oregon State University, Wood Science and Engineering, 119 Richardson Hall, Corvallis, OR 97331, USA; Laurence.Schimleck@oregonstate.edu

*Corresponding Author: Thomas L. Eberhardt, Ph.D.

USDA Forest Service

Forest Products Laboratory

One Gifford Pinchot Drive

Madison, WI 53726, USA

+1 608 231 9295

teberhardt@fs.fed.us
Abstract

Composition of the southern pine forest is now predominated by two species, loblolly pine \textit{(Pinus taeda L.)} and slash pine \textit{(Pinus elliottii} Engelm.), owing to fire suppression activities, natural regeneration on abandoned agricultural lands, and extensive planting. Comparisons of the wood and bark physical properties of these pines is of interest in terms of the yields of usable biomass, and for the bark, its ecological functionality on a living tree. Trees from a species comparison study were used to generate wood and bark property data, on a whole-tree basis, and for stem disks collected at breast height. Models were constructed to explain the effect of relative height on wood and bark properties. When comparing the whole-tree data, slash pine wood (0.523 vs. 0.498) and bark (0.368 vs. 0.311) specific gravity values were higher, both offset by lower moisture contents; slash pine, also produced a higher percentage of bark on a dry-mass basis (17% vs. 12.5%). Unlike wood properties, bark properties showed significant between-species differences when determined at breast height alone, the exception being moisture content. In terms of yield, harvests of a green tonne of loblolly pine and slash pine would give approximately the same dry weight of wood, but slash pine provides more bark.

\textbf{Keywords:} bark thickness, moisture content, specific gravity, wood quality, yield
1. Introduction

The species composition of the pine forest of the southeastern United States has changed over the years, from the vast occurrence of longleaf pine (*Pinus palustris* Mill.) before colonial settlement, to the current predominance of loblolly pine (*Pinus taeda* L.), favored by fire suppression activities and natural regeneration on abandoned agricultural lands (Fox et al. 2007; Stanturf et al. 2002). Loblolly pine was previously relegated to wet sites because of its susceptibility to fire when young, and was only a minor species on upland sites dominated by longleaf pine and mixed hardwoods (Schultz 1999). Slash pine (*Pinus elliottii* Engelm.) accompanied longleaf pine along the lower coastal plain, but given its greater susceptibility to fire, this species was confined to wet sites too (Monk 1968).

Today, the ranges for both loblolly pine and slash pine have been expanded through extensive planting of seedlings from tree improvement programs (McKeand et al. 2003). In the southern region of the United States, loblolly and slash pines have been planted on more than 10 million ha and 4.2 million ha, respectively (Barnett and Sheffield 2004; Huggett et al. 2013; Wear and Greis 2012). Loblolly pine is generally favored because of its rapid growth, ability to grow well on a range of sites, and resistance to fusiform rust; thus, loblolly pine comprises more than one half of the total southern pine volume (Schultz 1999; Shiver et al. 2000).

Side-by-side studies conducted to compare loblolly and slash pines have led to the general conclusion that loblolly pine productivity is higher, the exception being on very poorly drained flatwood sites (Borders and Harrison 1989). For example, Shiver et al. (2000) found that loblolly pine had significantly greater total stand volume (130 vs. 120 m³ ha⁻¹) and total green weight per hectare (119 vs. 105 tonnes ha⁻¹) than slash pine when grown on the same site at age 14. Other comparisons of these two species have been extensive and include biomass allocation patterns (e.g., foliage, branch, and stem mass), physiological responses...
(e.g., stomatal conductance, photosynthesis), and productivity (e.g., aboveground biomass) determinations (Burkes et al. 2003; Chmura et al. 2007; Chmura and Tjoelker 2008; Colbert et al. 1990; Dalla-Tea and Jokela 1991; Gonzalez-Benecke et al. 2014; Jokela and Martin 2000; Roth et al. 2007; Samuelson et al. 2012; Vogel et al. 2011).

Wood properties for loblolly and slash pines, such as specific gravity (SG), are readily available in the literature, and in some instances reflect mean values based on large pools of accumulated historical data (e.g., Forest Products laboratory 2010); the caveat when making general comparisons of data from individual studies found in the literature is that geographic location has a significant influence on SG (Clark and Saucier 1991; Jordan et al. 2008). Therefore, when comparisons of wood properties for loblolly pine and slash pine are made, there is greater confidence in the significance of observed differences when trees from the same geographic region are used. Altogether, data in the literature show that the SG of slash pine is higher than that for loblolly pine (Clark and Saucier 1991; Cole et al. 1966; Phillips et al. 1976). Recent determinations of basic SG for these two southern pines by X-ray densitometry of wood cores showed the whole-core values for slash pine (0.65) to be higher than those for loblolly pine (0.61), with notable differences in the SG of juvenile wood (Eberhardt and Samuelson 2015). Since the trees used in this study were mature (50 years), the cores were solvent extracted to remove the contribution of heartwood extractives to the SG and scanned again; results showed the same trend in SG, save for slightly lower whole-core values (slash pine = 0.63, loblolly pine = 0.58). The difference in ring SG would appear to derive from the greater proportion of latewood in slash pine (68%) compared to loblolly pine (61%) given that the earlywood SG of slash pine (0.36) and loblolly pine (0.35) are similar and the latewood SG of slash pine (0.78) and loblolly pine (0.77) are also similar (Eberhardt and Samuelson 2015).
Lacking in the literature are comparisons of the bark from these two southern pine species that would be of interest in terms of both the ecological functionality on a living tree (e.g., resistance to fire) and yields of usable biomass. Indeed, for some southern pine species, characterizations of the bark are relatively uncommon with detailed measurements of longleaf pine bark (e.g., thicknesses of the inner bark (secondary phloem) and outer bark (rhytidome) layers (Eberhardt 2013), and values for bark roughness (Eberhardt 2015)) only recently being reported. Whole bark thicknesses, which are often determined from wood disk diameter measurements outside the bark, subtracting those determined inside the bark, were used to estimate bark volumes of disks taken along the bole for loblolly pine (Antony et al. 2015). Alternatively, bark thickness gauges have seen use in field studies involving southern pines, such as species comparisons (Dipesh et al. 2015) and assessments of the functionality of bark against insects (Hanula et al. 2000) and fire (Wang and Wangen 2011); note that the quality of the data from bark gauges is highly dependent upon the skill level of the operator (Laasasenaho et al. 2005).

Given the development of wood-bioenergy markets, there is increasing interest in determining bark quantities as a subset of above-ground biomass determinations. The yield of bark (on a dry-weight basis) from southern pines collectively is a little more than 10% along the bole (Cole et al. 1966) with up to 60% for small longleaf pine branches (Phillips et al. 1976). Specific to slash pine and loblolly pine, a recent biofuels study showed that slash pine had a higher bark content (14.1%) than loblolly pine (10.5%), determined by hand-sorting the material obtained following whole-tree chipping (Baker et al. 2012); note that these values provide only a relative comparison because only larger particles of wood and bark were partitioned, and since the moisture content (MC) of the bark was not determined, it is not possible to estimate any differences on a dry-weight basis. Likewise, bark fuel value data (SG, higher heating value) seem to suggest higher values for slash pine, but the source of
the bark was not reported and there was no statistical assessment of species differences (Harder and Einspahr 1976). In a recent report by Antony et al. (2015), bark measures including its percentage of the tree stem, SG, and MC were determined for loblolly pine for different physiographic regions as part of an extensive sampling program orchestrated through the Wood Quality Consortium led by the University of Georgia. The objective of the current study was to compare wood and bark physical property data from stands of loblolly pine and slash pine, grown on the same site within the South Atlantic Coastal Plain; measurements along the bole provide the most comprehensive between-species comparison to date. Data presented here are relevant to the development of a better understanding of the ecological functionality of bark in a southern pine forest ecosystem and physical properties impacting the utilization of a southern forest biomass resource.

2. Materials and methods

2.1. Trees used in study

Ten plantations were sampled, ages 21 to 24 years, from a species comparison study established by the University of Georgia Pine Management Research Cooperative with the objective being to quantify growth differences between loblolly pine and slash pine when grown on the same site (Shiver et al. 2000). The ten stands were located in the South Atlantic Coastal Plain (Georgia and Florida). The stand locations are shown in Figure 1; note that stands 1 and 2 were located next to each other and share the same latitude and longitude (Table 1). The loblolly pine trees were included in the Wood Quality Consortium baseline study looking at regional differences in loblolly pine SG (Jordan et al. 2008). The plantations were conventionally managed with the exception of site preparation, the planting density was approximately 1,779 trees per ha, and the trees were thinned following age 14. Table 1
shows the summary statistics for the stands with location, age, DBH, and height for the two
pine species.

2.2. Tree sampling and bark measurements

Three trees from each species were felled from each of the 10 stands with one felled
tree representing the mean diameter class from the stand (the diameter class being determined
in 25 mm intervals). The other two felled trees were selected as representing diameter classes
that were immediately above and below the mean diameter class. Trees were felled with a
chainsaw, their branches removed, and the total height of the main bole recorded. Cross-
sectional disks (3.8 cm thickness) were collected along the tree at 0.15 and 1.4 m (or 1.5 m)
from the base and then at 1.5 m intervals up to an outside bark diameter of 5 cm. Disks were
sealed in plastic bags and transported back to the laboratory for further processing. Outside
and inside bark diameters were measured for the green disks with the difference providing a
measure of double bark thickness. Green weights were determined for the intact disks and
the peeled wood disks, the latter prepared by carefully peeling the bark away with the aid of a
chisel; the green weight of the bark was determined from the difference in green weight for
the intact disk and the corresponding peeled wood disk. Basic SG of bark and wood were
based on the oven-dry weights and green volumes; the largest section of peeled bark used to
determine the value for bark. Oven drying was carried out at 103 ± 2 ºC until a constant
mass was achieved (ASTM 2014). Green volumes were determined on the separated wood
and bark components by water immersion after soaking in water to ensure full saturation.
Moisture contents were based on green and oven-dry weights of the wood and bark
components, and reported on a dry weight basis as done in Antony et al. (2015). The
percentage of bark was calculated on the basis of the oven-dry weights of the bark and wood.
2.3. Statistical analysis and tree reconstruction

The statistical analysis and associated graphics were done in R statistical software (R Core Team 2016) with RStudio interface (RStudio 2016) and the packages dplyr (Wickham and Francois 2016), ggmap (Kahle and Wickham 2013), and lmerTest (Kuznetsova et al. 2016). The disk measurements were used to reconstruct an estimate of the whole-tree bark properties using the dplyr package (Wickham and Francois 2016) within R (R Core Team 2016). For each tree, the area of the wood and bark were calculated for each disk, and the wood and bark properties then weighted on the basis of these individual disk areas, relative to the total area for all disks, to find the whole-tree properties. The proportions of bark were determined on both a weight basis and a green volume basis; note that the southern pines are typically bought and sold on a weight basis, thus weight basis is more applicable to the forest industry sector.

The mean, standard deviation, and range of the values were calculated for each variable. For the wood, the SG, MC, and green weight were calculated. For the bark, the double bark thickness, SG, MC, green weight, percent of dry mass, and percent of green volume were calculated. For the wood and bark, the green weight of wood and bark to volume of wood, and the green weight of wood and bark to volume of wood and bark were calculated. Analysis of variance was conducted using linear mixed-effects models to test the effect of species on the wood properties with stand and tree as random factors. A 0.05 significance level was used for all statistical tests. Models were developed by examining the plots and determining the general relationship between the dependent and independent variables; when nonlinear trends were found, the nonlinear model forms used were those discussed in Ratkowsky (1990). The regression models were evaluated by examining the plots and determining if the parametrized model fit to the general trend of the data. The coefficient of determination (R^2), based on the relationship between the actual variable and
the predicted variable, was calculated, as was the root mean square error (RMSE). Linear models were constructed to explain the relationship between wood MC and wood SG:

$$MC = b_0 + b_1 SG$$

where b_0 and b_1 are the regression model parameters. Quadratic and nonlinear models were constructed to explain the effect of wood properties by relative height. A quadratic model was used to explain the relationship between bark SG, or bark percentage, with relative height:

$$y = b_0 + b_1 rh + b_2 rh^2$$

where y is bark SG or bark percentage, rh is relative height, and b_0, b_1, b_2 are the regression parameters. For the wood SG models, a nonlinear model was used:

$$y = b_0 + b_1 \log(rh^{-b_2} - 1)$$

where y is wood SG, rh is relative height, and b_0, b_1, b_2 are the regression parameters. For wood MC models, a nonlinear model was used:

$$y = \frac{b_0}{1 + e^{-b_1 - rh/b_2}}$$

where y is wood MC, rh is relative height, and b_0, b_1, b_2 are the regression parameters. For the bark MC models, a nonlinear model was used:

$$y = e^{b_0 + b_1 rh + b_2 rh^2}$$

where y is bark MC, rh is relative height, and b_0, b_1, b_2 are the regression parameters.

3. Results

3.1. Wood properties

3.1.1. Wood SG

The whole-tree values determined for wood SG showed a significant difference ($P = 0.0001$) between loblolly and slash pines, with the value for slash pine (0.523) being higher.
than that for loblolly pine (0.498). Stand level data were also generated (Table 3) and showed higher values for wood SG in slash pine compared to loblolly pine for all but one stand. Since many studies rely on the sampling of tree cores collected at breast height alone, the data were processed accordingly for comparative purposes. In contrast to the whole-tree values discussed above, no significant difference ($P = 0.1151$) was observed between loblolly and slash pines for the breast height alone values (Table 4); no trends were observed in the corresponding stand-level data (Table 5). We attribute the higher wood SG values at breast height (loblolly pine = 0.557; slash pine = 0.570), relative to the whole-tree values, to the presence of mature wood that decreases in its contribution to total stem wood (juvenile and mature wood) with increasing tree height. Plotting wood SG for all disks against relative height shows wood SG to decrease for both species with relative height up the tree, and wood SG data points for slash pine trending higher than those for loblolly pine (Figure 2a).

Nonlinear models were constructed to explain wood SG based on relative height. The model for loblolly pine is:

$$
Loblolly \ Pine \ Wood \ SG = 0.472 + 0.036 \times \log (r_h^{-0.683} - 1)\#(6)
$$

where r_h is the relative height. The R^2 was 0.77 for the model with a RMSE of 0.027. The model for slash pine is:

$$
Slash \ Pine \ Wood \ SG = 0.496 + 0.027 \times \log (r_h^{-0.788} - 1)\#(7)
$$

where r_h is relative height. The R^2 was 0.60 for the model with a RMSE of 0.034. A comparison of the two models reveals that the inflection point for the slash pine model (0.496) is higher than loblolly pine (0.472).

3.1.2. Wood MC
Wood MC determined on a whole-tree basis also showed a significant difference ($P < 0.0001$), with the value for loblolly pine (106%) being higher than slash pine (96%). Stand-level data were also generated (Table 3) and show higher wood MC in loblolly pine, compared to slash pine, for all stands. The higher MC for wood with lower SG is consistent with the theoretical maximum MC (MC_{max}) calculation for wood:

$$MC_{\text{Max}} = \frac{1}{SG_g} - \frac{1}{1.54}$$

where SG_g is the green SG, and 1.54 is the SG of the cell wall (Forest Products Laboratory 2010). Thus, within a species, lower SG wood tends to have a higher MC. The relationship between wood MC with wood SG was linear for both species. The model for loblolly pine is:

$$Loblolly \text{ Pine Wood } MC = 326 - 440SG$$

where the R^2 was 0.90 for the model with a RMSE of 9%. The model for slash pine is:

$$Slash \text{ Pine Wood } MC = 308 - 403SG$$

where the R^2 was 0.87 for the model with a RMSE of 8%.

In contrast to the whole-tree values for wood MC, no significant difference ($P = 0.2576$) was observed between loblolly and slash pines for the breast-height values (Table 4); and no trends were observed in the corresponding stand-level data (Table 5). The lack of significant differences in MC mirrors the lack of differences in SG at breast height. We attribute the lower wood MC values at breast height (loblolly pine = 80%; slash pine = 77%), relative to the whole-tree values, to the presence of mature wood that decreases in its contribution to total stem wood (juvenile and mature wood) with increasing tree height. Plotting wood MC for all disks against relative height shows wood MC for both species increases with relative height up the tree, with wood MC for slash pine being consistently lower than that for loblolly pine (Figure 2b). Data points for loblolly pine were evenly distributed above those for slash pine, except for disks taken at 0.15m. A nonlinear
model was constructed for wood MC as a function of relative height. The model for loblolly pine is:

\[
\text{Loblolly Pine Wood MC} = \frac{150}{1 + e^{\frac{-0.017-rh}{0.239}}} \tag{11}
\]

where \(rh\) is relative height. The \(R^2\) was 0.77 for the model with a RMSE of 13%. The model for slash pine is:

\[
\text{Slash Pine Wood MC} = \frac{144}{1 + e^{\frac{-0.00574-rh}{0.354}}} \tag{12}
\]

where \(rh\) is relative height. The \(R^2\) was 0.71 for the model with a RMSE of 12%. The asymptote parameter is slightly higher for loblolly pine (150%) than slash pine (144%) indicating that at the tops of the trees the MC will be higher for loblolly pine than slash pine.

3.2. Bark properties

3.2.1. Bark SG

Data collected through the present study also provided the opportunity to directly compare bark properties for loblolly and slash pines on a whole-tree basis. Whole-tree bark SG for slash pine was significantly higher (0.368 vs. 0.311, \(P < 0.0001\)) than for loblolly pine (Table 2). Stand-level data were also generated (Table 3) and for all stands slash pine had higher bark SG than loblolly pine. Similar to the whole-tree values for bark SG, a significant difference (\(P < 0.0001\)) was observed between loblolly pine (0.295) and slash pine (0.364) for the samples collected at breast-height (Table 4); the corresponding stand-level data showed consistently higher values for slash pine relative to loblolly pine (Table 5). Bark SG values for both species were only slightly lower at breast height, relative to the whole-tree values.
Plotting bark SG against relative height shows the data for slash pine trend higher than those for loblolly pine (Figure 3a). Simple linear correlation coefficients were essentially zero (not shown). Quadratic models were constructed for bark SG. The loblolly pine model is:

\[
\text{Loblolly Pine Bark SG} = 0.291 + 0.218rh - 0.256rh^2
\]

where \(rh \) is relative height. The \(R^2 \) was 0.18 for the model with a RMSE of 0.034. The slash pine model is:

\[
\text{Slash Pine Bark SG} = 0.366 + 0.026rh - 0.042rh^2
\]

where \(rh \) is relative height. The \(R^2 \) was 0.02 for the model with a RMSE of 0.03. The maximums were near mid-height for both species, however the trend by relative height for loblolly pine was much more pronounced than what was found for slash pine.

3.2.2. Bark MC

Bark MC determined on a whole-tree basis also showed a significant difference (\(P = 0.0007 \)), with the value for loblolly pine (78%) being higher than that for slash pine (69%). While there were strong linear relationships between wood SG and MC, the bark relationships were neither apparent for loblolly pine (\(R^2 = 0.03 \)) nor slash pine (\(R^2 = 0.18 \)). In contrast to the whole-tree values for bark MC, no significant difference (\(P = 0.8245 \)) was observed between loblolly pine (52%) and slash pine (53%) for the breast-height values (Table 4); likewise, while the stand-level data showed mostly higher values for loblolly pine relative to slash pine for the whole-tree data (Table 3), this was not apparent for the breast-height alone data (Table 5). Plotting bark MC for all disks against relative height (Figure 3b) clearly shows increases with relative height up the tree, similar to that for wood (Figure 2b); however, the bark MC data diverge to a greater extent with height than observed for wood the
MC data. Plotting bark MC against wood MC showed weak linear correlations for both loblolly pine (R² = 0.51) and slash pine (R² = 0.44) (plots not shown).

Nonlinear models were constructed for bark MC. The loblolly pine model is:

\[
\text{Loblolly Pine Bark MC} = e^{3.879 + 2.382rh + 0.892rh^2} #(15)
\]

where rh is relative height. The R² was 0.66 for the model with a RMSE of 33%. The slash pine model is:

\[
\text{Slash Pine Bark MC} = e^{3.864 + 1.6rh - 0.505rh^2} #(16)
\]

where rh is relative height. The R² was 0.49 for the model with a RMSE of 27%. The model starting points are similar (3.879 vs. 3.864) but the parameters allow separation as relative height increases.

3.2.3. Bark percentages and thickness

The whole-tree values determined for bark percentage on a dry-mass basis (Table 2) showed a significant difference (P < 0.0001) between loblolly and slash pines, with the value for slash pine (17.0%) being higher than that for loblolly pine (12.5%); results on a dry-weight basis are common to biomass allocation studies (e.g., Phillips et al. 1976). Parallel results were obtained on data based on green bark volumes. Plotting the bark percentage values (dry-mass basis) against relative height showed that for loblolly pine the values at the base of the tree and at the top of the tree were above 10%, offset by some values at mid-height being lower than 10% (Figure 4); bark percentage values for slash pine trended in a similar manner except for being shifted roughly 5 percentage points higher.

Quadratic models were constructed for bark percentages (dry-mass basis). The loblolly pine model is:
\[\text{Loblolly Pine Bark} \% = 15.883 - 25.175rh + 24.735rh^2 \] (17)

where \(rh \) is relative height. The \(R^2 \) was 0.27 for the model with a RMSE of 3.1%. The slash pine model is:

\[\text{Slash Pine Bark} \% = 20.307 - 32.647rh + 42.392rh^2 \] (18)

where \(rh \) is relative height. The \(R^2 \) was 0.33 for the model with a RMSE of 4.2%.

In the current study, no difference in double bark thickness was observed for loblolly pine and slash pine on a whole-tree basis (\(P = 0.7148 \)) or at breast height (\(P = 0.1896 \)). However, given that bark thickness is influenced by tree diameter a more appropriate comparison is the volume of bark of which slash pine had significantly higher green volume (\(P < 0.0001, 22.5\% \) vs. 18.7%).

3.3. Green weights of wood and bark

The green weight of wood (kg m\(^{-3}\)) was determined on both a whole-tree basis (Table 2) and at breast height alone (Table 4). No significant differences (whole tree, \(P = 0.6425 \); breast-height, \(P = 0.4960 \)) were observed in either case for green weight of wood between the two species. The whole-tree green weight of bark was also determined (Table 2) and found to be higher (\(P < 0.0001 \)) for slash pine (619 kg m\(^{-3}\)) than for loblolly pine (553 kg m\(^{-3}\)). Similar results were obtained with the breast-height green weight values (Table 4) with the value for slash pine (554 kg m\(^{-3}\)) being significantly higher (\(P < 0.0001 \)) than that for loblolly pine (448 kg m\(^{-3}\)).

Another related measure is the green weight of wood and bark to the volume of wood (Miles and Smith 2009), a measure most commonly used for scaling logs manually. Here we found significant differences (\(P < 0.0001 \)) with slash pine (1202 kg m\(^{-3}\)) having higher green weight than loblolly pine (1151 kg m\(^{-3}\)). Alternatively, the green weight of wood and bark can be reported using the combined volume of wood and bark which is likely more
appropriate for the southern pines which are sold on the basis of weight. We did not find
significant differences when using the green volume of wood and bark ($P = 0.5041$). The
whole-tree and breast-height data are provided in Tables 2 and 4, respectively, given that they
have a practical application for wood sales.

4. Discussion

4.1. Wood physical property differences

The higher whole-tree wood SG value for slash pine, compared to loblolly pine, is
consistent with literature reports (Harder and Einspahr 1976; Clark and Saucier 1991; Forest
Products Laboratory 2010). Unique to the current study is that we demonstrate a statistically
significant difference for trees of similar age, diameter, and height, with all trees sampled
being within the same physiographic region. In a prior study comparing only loblolly pine in
6 physiographic regions, significant differences in whole-tree wood SG were observed
between some of the regions (Antony et al. 2015); likewise, significant differences between
some of the physiographic regions were observed with whole-core wood SG values
determined at breast height alone (Jordan et al. 2008). The consequences of including
additional physiographic regions (and/or age classes) in the current study are not known; the
number of physiographic regions in any such assessment would be limited by the fact that the
range for slash pine is not as widespread as it is for loblolly pine. Among the physiographic
regions encompassed in the range of slash pine, results are conflicting with Antony et al.
(2015) observing differences in loblolly pine whole-tree wood SG as opposed to Jordan et al.
Given the potential for the data variability to be impacted by sampling from different
physiographic regions, it is plausible that the statistically significant between-species
difference we demonstrate here may not occur in other physiographic regions.
Wood MC determined on a whole-tree basis was higher for loblolly pine (106%) than slash pine (96%), similar to the findings of Baker et al. (2012) who reported a significant difference for the MC of loblolly pine and slash pine chips (110 vs. 103%, $P = 0.004$).

Within a species, lower SG wood tends to have a higher MC. This trend was observed in a study examining the regional differences in wood properties of loblolly pine (Antony et al. 2015), where the inverse relationship between wood SG and MC is accentuated with lower values for wood SG (0.423-0.468) than those reported here, coinciding with higher values for wood MC on a dry-weight basis (109-128%).

4.2. Bark physical property differences

Whole-tree bark SG for slash pine was higher (0.368 vs. 0.311) than for loblolly pine, similar to values in the literature (0.373 vs. 0.329), albeit these volume-weighted values were reported with no statistical comparison (Phillips et al. 1976). Higher bark SG was reported for slash pine (0.474) and loblolly pine (0.477) by Martin (1969), with those values being even higher than the maximums we observed for slash pine (0.412) and loblolly pine (0.365).

It should be noted that the values determined by Martin (1969) were based on an oven-dry basis (oven-dry weight and oven-dry volume) and not a green basis (i.e., oven-dry weight and green volume) as done in the present study. We can attribute these higher bark density values to a significantly lower volume for dry bark relative to green bark. Specifically, in a study on longleaf pine bark, it was found that radial shrinkage for the inner bark on the northern face of the tree was nearly 23% upon drying green bark under ambient conditions (Eberhardt 2013); the corresponding value for the outer bark was nearly 13%. With bark samples used by Martin (1969) being in an oven-dry state, significantly lower volumes would have resulted in significantly higher bark SG values. Similar to the whole-tree values for bark SG, a significant difference was observed between loblolly pine (0.295) and slash pine (0.364) for
the samples collected at breast-height. Bark SG values for both species were only slightly lower at breast height, relative to the whole-tree values.

Consistent with the above results, plotting bark SG against relative height (Figure 3) showed the data for slash pine trend higher than those for loblolly pine, with maximums near mid-height for both species. The exact reason for the bark SG values to show maximums as such may be the result of bark anatomy related to the proportions of living inner bark (functional phloem) and essentially dead outer bark (rhytidome) along the length of the tree bole; the inner bark transports the products of photosynthesis while the outer bark seals in moisture and provides a protective barrier (Eberhardt 2013, 2015; Trockenbrodt 1990). In very simplified terms, the development of new periderms results in the oldest zones of inner bark being transformed into an ultimately dead layer in the outer bark. The layers in outer bark differ from xylem in that they are not specifically formed annual layers, nor do they all remain for the life of the tree, with the outermost layers of outer bark sloughed off with time (Eberhardt 2013). Moving up from the base of the tree, the proportion of outer bark decreases, as does the degree of weathering. It is plausible that the SG of the outer bark decreases upon weathering, thereby reversing the trend of increasing SG with increasing outer bark thickness. Further work is needed to determine the SG of the inner and outer bark components, and the impact of aging on bark SG, to validate this rationalization of the aforementioned mid-height maximums in bark SG.

Bark MC determined on a whole-tree basis gave a higher value for loblolly pine (78%) compared to slash pine (69%). Slightly lower values were reported by Phillips et al. (1976) for loblolly pine (65%) and slash pine (52%). Following the same inverse relationship between wood MC and wood SG, a higher bark MC coincided with a lower bark SG. In general terms, this inverse relationship was reported for loblolly pine (Antony et al. 2015) when making side-by-side comparisons of bark MC and bark SG data for different
physiographic regions. The data reported by Phillips et al. (1976) showed the inverse to hold true when comparing the data for slash pine and loblolly pine, but not necessarily the other two southern pines (longleaf pine, shortleaf pine) included in that study.

As discussed above, bark is comprised of inner and outer bark components with differences in anatomy, state of living, and functionality. Specific to the MC of inner and outer bark components, Reifsnyder et al. (1967) determined average values for red pine (Pinus resinosa Ait.), on a dry-weight basis, to be 182% for the inner bark and 25% for the outer bark. This led to the conclusion that determinations of bark MC are “strongly influenced” by the inner and outer bark proportions. In longleaf pine, the thickness of the inner bark is relatively constant while that for the outer bark declines from the base of the tree upwards (Eberhardt 2013; 2015). It is likely that the two southern pines in this study have similar distributions of inner to outer bark, thus the increase in bark MC with relative height can be attributed to an increasing proportion of inner bark.

4.3. Bark percentages and yields

The whole-tree values determined for bark percentage on a dry-mass basis showed the value for slash pine (17.0%) being higher than that for loblolly pine (12.5%); Phillips et al. (1976) also observed the percentage of bark, determined on a dry-weight basis, to be higher in slash pine relative to loblolly pine. Specifically, the values were 1.4 percentage points higher for slash pine (12.7%) relative to loblolly pine (11.3%) in the stem and 11.3 percentage points higher in the branches (32.5% vs. 21.2%). Baker et al. (2012) also compared loblolly and slash pines and found the percentage of bark, on a wet-weight basis, to be 3.6 percentage points higher for slash pine (14.1%) compared to loblolly pine (10.5%). Plotting the bark percentage values against relative height (Figure 4) showed loblolly pine and slash pine trended in a similar manner except for the values for slash pine being shifted
roughly 5 percentage points higher. In terms of utilization, slash pine would provide a higher amount of bark residue, irrespective of where the roundwood is taken (i.e., butt log, tree tops).

4.4. Fire ecology of thicker bark

No difference in double bark thickness was observed for loblolly pine and slash pine on a whole-tree basis or at breast height. In terms of its adaptation to the environment, it has been widely hypothesized that thicker bark is a response to more frequent fires (e.g., Pausas 2015). Of the southern pines, longleaf pine, which previously dominated forests in the southeastern United States, is considered a fire climax species and displays a number of adaptations (thick bark, grass stage) that allow it to tolerate frequent, low-intensity fires (Haywood 2000; Hardin et al. 2001; Wang and Wangen 2011). Slash pine and loblolly pine can tolerate fire to some degree but are not as resistant as longleaf pine (Hardin et al. 2001); while south Florida slash pine (Pinus elliottii var. densa Little and Dorman) display adaptions similar to longleaf pine (Hardin et al. 2001; Menges and Deyrup 2001). The important role of thick bark in surviving fire was demonstrated by Hare (1965) who exposed the bark of standing loblolly and slash pine trees to a flame and reported significantly longer times for the cambium of slash pine trees to reach 140°C than for loblolly pine (Hare 1965). Since the thermal conductivity of bark is a function of its density, MC, and temperature (Bauer et al. 2010; Martin 1963), it may not be appropriate to attribute fire resistance to any single attribute. Hare (1965) did not measure bark density or MC.

At this juncture it should be mentioned that southern pine bark is not smooth and thus given that there are plates of bark with crevices between, and a simple measurement of double bark thickness may not truly represent the amount of bark that would separate a fire from the cambium it is protecting. Determinations of bark “roughness” of longleaf pine
wood disks were only recently conducted by measuring maximum and minimum bark thicknesses and showed bark roughness values to be constant to a relative height of 60%, decreasing up through the crown (Eberhardt 2015). It was beyond the scope of the current study to conduct such measurements; however, we can say that since bark structure (appearance) varies among the southern pines, and it roughness varies along the stem for a given species, that fire resistance cannot be simply attributed to the thickness (or percent of dry mass or percent of green volume) of bark for any given species.

4.5. Green weights and roundwood processing

Roundwood is frequently sold on the basis of its “green weight,” a value with units of weight and volume, being pounds per cubic foot or kilograms per cubic meter (Miles and Smith 2009). Along with results for SG and MC, Anthony et al. (2014) reported green weights for wood. Parallel to that study, the green weight of wood (kg m$^{-3}$) was determined on both a whole-tree basis and at breast height alone, with no significant between-species differences. These results can be rationalized by the higher wood SG for slash pine being offset by lower wood MC, relative to the corresponding values for loblolly pine. Intuitively, with similar green weights, costs associated with the transportation of green wood should be the same for both species, especially after debarking, as done for pulp-grade chips produced during lumber manufacturing. The mill buying the chips would receive more wood with slash pine given the higher SG and lower MC; however, these values are taken for the whole tree and do not reflect the outer portion of the bole which is where these chips are typically produced.

The whole-tree green weight of bark was determined to be higher for slash pine (619 kg m$^{-3}$) compared for loblolly pine (553 kg m$^{-3}$); similar results were obtained with the breast-height green weight values. Only very limited data are available that specify the MC
of the inner and outer bark components. Reifsnyder et al. (1967) determined average values for red pine MC, on a dry-weight basis, to be 182% for the inner bark and 25% for the outer bark; similar results were reported by Martin (1969) for loblolly, longleaf, and slash pines. Accordingly, the MC of a whole bark sample is a reflection of the proportions of inner bark and outer bark. We can attribute the higher whole-tree green weight of bark to the increasing proportion of higher MC inner bark with increasing relative height. Since prior work has shown that the proportions of inner and outer bark present in bark residues obtained during industrial processing is dependent up the debarking method applied (Eberhardt 2012), transportation costs based on weight may be subtly impacted by pine species composition and compounded by how the roundwood was processed.

Using the values found here, a tonne (1000 kg) of green loblolly pine wood and bark would produce 494 kg of dry biomass of which 432 kg would be wood and 62 kg would be bark. A tonne of green slash pine wood and bark would produce 522 kg of dry biomass of which 433 kg would be wood and 89 kg would be bark. Thus a tonne would yield essentially the same weight of wood but the slash pine tonne would result in more bark. It is important to note that these samples were collected in the summer months from May to August, and thus variation is likely to be found if these same stands were to be sampled in different seasons. Doruska and Patterson (2006) found that loblolly pine significantly varied with the highest weight scaling factors found in the spring and fall months compared to the summer and winter months. It is also important to note that the wood/bark SG and MC of different age trees and different silvicultural treatments will yield different values.

5. Summary

The destructive sampling of trees from a species comparison study provided wood property data for loblolly pine and slash pine showing differences on a whole-tree basis, but
not for disks collected at breast height alone. Particularly unique to this study was the parallel collection of bark property data that are of interest in terms of both ecological functionality and biomass yields. Whole-tree bark SG was significantly higher for slash pine offset by the bark MC being significantly higher for loblolly pine; the percentage of bark for slash pine was significantly higher than that for loblolly pine. Unlike the wood properties, bark properties showed significant between-species differences when determined at breast height alone, the exception being MC. Altogether, results demonstrate that a harvest of loblolly pine and slash pine would yield the same weights of dry wood; however, slash pine would yield more bark, irrespective of harvesting location. Higher processing costs would be associated with drying the additional moisture in loblolly pine wood compared to that in slash pine wood. Also, facilities that utilize the bark for generating energy would also have greater energy yields from slash pine than from loblolly pine.

References

Miles, P.D., and Smith, W.B. 2009. Specific gravity and other properties of wood and bark for the 156 tree species found in North America, Research Note NRS-38. USDA Forest Service, Northern Research Station, Newtown Square, PA. 35 p.

Wickham, H., Francois, R. 2016. dplyr: A grammar of data manipulation. R package version 0.5.0. https://CRAN.R-project.org/package=plyr
Table 1: Stand locations and characteristics.

<table>
<thead>
<tr>
<th>Stand</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Age</th>
<th>Species</th>
<th>DBH (cm) Mean</th>
<th>DBH (cm) SD</th>
<th>Height (m) Mean</th>
<th>Height (m) SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31.4232</td>
<td>-81.8125</td>
<td>21</td>
<td>Loblolly</td>
<td>23.3</td>
<td>2.9</td>
<td>21.2</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slash</td>
<td>21.5</td>
<td>0.5</td>
<td>20.9</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>31.4232</td>
<td>-81.8125</td>
<td>21</td>
<td>Loblolly</td>
<td>18.9</td>
<td>4.1</td>
<td>19.5</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slash</td>
<td>15.9</td>
<td>4.8</td>
<td>16.2</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>30.6689</td>
<td>-81.6289</td>
<td>21</td>
<td>Loblolly</td>
<td>20.3</td>
<td>0.7</td>
<td>17.2</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slash</td>
<td>23.1</td>
<td>3.9</td>
<td>19.7</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>30.5236</td>
<td>-81.9198</td>
<td>21</td>
<td>Loblolly</td>
<td>20.0</td>
<td>0.7</td>
<td>17.4</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slash</td>
<td>22.1</td>
<td>2.0</td>
<td>18.9</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>30.6725</td>
<td>-81.7643</td>
<td>21</td>
<td>Loblolly</td>
<td>23.9</td>
<td>5.8</td>
<td>20.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slash</td>
<td>20.5</td>
<td>1.7</td>
<td>21.5</td>
<td>0.8</td>
</tr>
<tr>
<td>6</td>
<td>30.7545</td>
<td>-81.8156</td>
<td>22</td>
<td>Loblolly</td>
<td>22.4</td>
<td>2.2</td>
<td>18.2</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slash</td>
<td>25.5</td>
<td>3.2</td>
<td>21.1</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>32.19529</td>
<td>-81.7040</td>
<td>22</td>
<td>Loblolly</td>
<td>17.4</td>
<td>2.0</td>
<td>15.8</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slash</td>
<td>17.6</td>
<td>2.7</td>
<td>16.0</td>
<td>0.8</td>
</tr>
<tr>
<td>8</td>
<td>30.48235</td>
<td>-82.02715</td>
<td>24</td>
<td>Loblolly</td>
<td>24.8</td>
<td>4.8</td>
<td>20.6</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slash</td>
<td>16.4</td>
<td>1.3</td>
<td>17.2</td>
<td>1.6</td>
</tr>
<tr>
<td>9</td>
<td>31.2576</td>
<td>-81.5479</td>
<td>22</td>
<td>Loblolly</td>
<td>19.3</td>
<td>1.3</td>
<td>19.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slash</td>
<td>20.0</td>
<td>1.6</td>
<td>20.1</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>31.02976</td>
<td>-81.57391</td>
<td>23</td>
<td>Loblolly</td>
<td>19.9</td>
<td>2.3</td>
<td>18.4</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slash</td>
<td>19.1</td>
<td>1.7</td>
<td>20.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Table 2. Comparison of overall wood and bark properties between loblolly pine and slash pines: whole-tree values based on disks taken along entire tree bole.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Property</th>
<th>Lobolly</th>
<th></th>
<th>Slash</th>
<th></th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Property</td>
<td>Mean</td>
<td>SD</td>
<td>Min</td>
<td>Max</td>
<td>Mean</td>
</tr>
<tr>
<td>Wood</td>
<td>Specific Gravity</td>
<td>0.498</td>
<td>0.022</td>
<td>0.447</td>
<td>0.548</td>
<td>0.523</td>
</tr>
<tr>
<td></td>
<td>Moisture Content (%)</td>
<td>106</td>
<td>9</td>
<td>93</td>
<td>128</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Green Weight (kg m⁻³)</td>
<td>1026</td>
<td>25</td>
<td>974</td>
<td>1085</td>
<td>1023</td>
</tr>
<tr>
<td>Bark</td>
<td>Double Bark Thickness (cm)</td>
<td>0.88</td>
<td>0.18</td>
<td>0.67</td>
<td>1.45</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Specific Gravity</td>
<td>0.311</td>
<td>0.024</td>
<td>0.271</td>
<td>0.365</td>
<td>0.368</td>
</tr>
<tr>
<td></td>
<td>Moisture Content (%)</td>
<td>78</td>
<td>17</td>
<td>47</td>
<td>110</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Green Weight (kg m⁻³)</td>
<td>553</td>
<td>66</td>
<td>432</td>
<td>685</td>
<td>619</td>
</tr>
<tr>
<td></td>
<td>Percent of Dry Mass (%)</td>
<td>12.5</td>
<td>2.7</td>
<td>8.9</td>
<td>19.1</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>Percent of Green Volume (%)</td>
<td>18.7</td>
<td>4.2</td>
<td>12.5</td>
<td>26.9</td>
<td>22.5</td>
</tr>
<tr>
<td>Wood and Bark</td>
<td>Green Weight of Wood and Bark to Volume Wood (kg m⁻³)</td>
<td>1151</td>
<td>37</td>
<td>1072</td>
<td>1228</td>
<td>1202</td>
</tr>
<tr>
<td></td>
<td>Green Weight of Wood and Bark to Volume Wood and Bark (kg m⁻³)</td>
<td>935</td>
<td>36</td>
<td>856</td>
<td>990</td>
<td>930</td>
</tr>
</tbody>
</table>
Table 3: Comparison of stand-level values for wood and bark properties between loblolly pine and slash pines: whole-tree values based on disks taken along entire tree bole.

<table>
<thead>
<tr>
<th>Stand</th>
<th>Species</th>
<th>Specific Gravity</th>
<th>Moisture Content (%)</th>
<th>Green Weight (kg m(^{-3}))</th>
<th>Double Bark Thickness (cm)</th>
<th>Specific Gravity</th>
<th>Moisture Content (%)</th>
<th>Green Weight (kg m(^{-3}))</th>
<th>Percent of Dry Mass (%)</th>
<th>Percent of Green Volume (%)</th>
<th>Green Weight of Wood and Bark to Volume Wood (kg m(^{-3}))</th>
<th>Green Weight of Wood and Bark to Volume Wood and Bark (kg m(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Loblolly</td>
<td>0.495</td>
<td>105</td>
<td>1014</td>
<td>0.91</td>
<td>0.284</td>
<td>88</td>
<td>535</td>
<td>11.3</td>
<td>18.2</td>
<td>1133</td>
<td>926</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.487</td>
<td>98</td>
<td>963</td>
<td>0.81</td>
<td>0.341</td>
<td>89</td>
<td>642</td>
<td>14.7</td>
<td>19.8</td>
<td>1122</td>
<td>900</td>
</tr>
<tr>
<td>2</td>
<td>Loblolly</td>
<td>0.486</td>
<td>118</td>
<td>1060</td>
<td>0.79</td>
<td>0.322</td>
<td>87</td>
<td>600</td>
<td>12.8</td>
<td>18.1</td>
<td>1193</td>
<td>976</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.530</td>
<td>95</td>
<td>1033</td>
<td>0.82</td>
<td>0.346</td>
<td>76</td>
<td>609</td>
<td>17.7</td>
<td>24.7</td>
<td>1234</td>
<td>928</td>
</tr>
<tr>
<td>3</td>
<td>Loblolly</td>
<td>0.513</td>
<td>103</td>
<td>1042</td>
<td>0.82</td>
<td>0.306</td>
<td>70</td>
<td>520</td>
<td>12.5</td>
<td>19.3</td>
<td>1166</td>
<td>940</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.531</td>
<td>97</td>
<td>1042</td>
<td>0.99</td>
<td>0.386</td>
<td>62</td>
<td>625</td>
<td>17.1</td>
<td>22.1</td>
<td>1220</td>
<td>950</td>
</tr>
<tr>
<td>4</td>
<td>Loblolly</td>
<td>0.495</td>
<td>111</td>
<td>1043</td>
<td>1.18</td>
<td>0.289</td>
<td>61</td>
<td>466</td>
<td>15.7</td>
<td>24.0</td>
<td>1190</td>
<td>904</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.518</td>
<td>95</td>
<td>1006</td>
<td>1.13</td>
<td>0.364</td>
<td>45</td>
<td>527</td>
<td>19.6</td>
<td>25.6</td>
<td>1188</td>
<td>882</td>
</tr>
<tr>
<td>5</td>
<td>Loblolly</td>
<td>0.506</td>
<td>106</td>
<td>1038</td>
<td>0.76</td>
<td>0.298</td>
<td>106</td>
<td>616</td>
<td>13.2</td>
<td>18.3</td>
<td>1188</td>
<td>971</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.537</td>
<td>93</td>
<td>1037</td>
<td>0.71</td>
<td>0.367</td>
<td>85</td>
<td>682</td>
<td>13.2</td>
<td>18.3</td>
<td>1188</td>
<td>971</td>
</tr>
<tr>
<td>6</td>
<td>Loblolly</td>
<td>0.507</td>
<td>99</td>
<td>1009</td>
<td>0.85</td>
<td>0.322</td>
<td>81</td>
<td>584</td>
<td>11.9</td>
<td>17.5</td>
<td>1133</td>
<td>934</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.534</td>
<td>90</td>
<td>1011</td>
<td>1.18</td>
<td>0.376</td>
<td>66</td>
<td>623</td>
<td>17.9</td>
<td>23.5</td>
<td>1203</td>
<td>920</td>
</tr>
<tr>
<td>7</td>
<td>Loblolly</td>
<td>0.507</td>
<td>102</td>
<td>1024</td>
<td>1.00</td>
<td>0.310</td>
<td>50</td>
<td>465</td>
<td>17.0</td>
<td>25.1</td>
<td>1179</td>
<td>884</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.541</td>
<td>93</td>
<td>1042</td>
<td>0.96</td>
<td>0.380</td>
<td>45</td>
<td>549</td>
<td>21.2</td>
<td>27.8</td>
<td>1252</td>
<td>903</td>
</tr>
<tr>
<td>8</td>
<td>Loblolly</td>
<td>0.478</td>
<td>112</td>
<td>1010</td>
<td>0.76</td>
<td>0.336</td>
<td>83</td>
<td>616</td>
<td>10.6</td>
<td>14.5</td>
<td>1113</td>
<td>952</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.514</td>
<td>101</td>
<td>1033</td>
<td>0.83</td>
<td>0.377</td>
<td>60</td>
<td>600</td>
<td>18.0</td>
<td>23.0</td>
<td>1214</td>
<td>933</td>
</tr>
<tr>
<td>9</td>
<td>Loblolly</td>
<td>0.497</td>
<td>106</td>
<td>1020</td>
<td>0.92</td>
<td>0.311</td>
<td>69</td>
<td>525</td>
<td>13.3</td>
<td>19.8</td>
<td>1150</td>
<td>921</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.523</td>
<td>96</td>
<td>1027</td>
<td>0.86</td>
<td>0.371</td>
<td>78</td>
<td>659</td>
<td>16.4</td>
<td>21.7</td>
<td>1212</td>
<td>947</td>
</tr>
<tr>
<td>10</td>
<td>Loblolly</td>
<td>0.495</td>
<td>102</td>
<td>1000</td>
<td>0.79</td>
<td>0.331</td>
<td>84</td>
<td>607</td>
<td>11.0</td>
<td>15.7</td>
<td>1113</td>
<td>938</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.518</td>
<td>100</td>
<td>1035</td>
<td>0.68</td>
<td>0.374</td>
<td>80</td>
<td>674</td>
<td>14.1</td>
<td>18.5</td>
<td>1188</td>
<td>968</td>
</tr>
</tbody>
</table>
Table 4. Comparison of wood and bark properties between loblolly pine and slash pine; whole-disk values based on disk taken at breast height alone.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Property</th>
<th>Loblolly</th>
<th>Slash</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Min</td>
</tr>
<tr>
<td>Wood</td>
<td>Specific Gravity</td>
<td>0.557</td>
<td>0.029</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>Moisture Content (%)</td>
<td>80</td>
<td>11</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Green Weight (kg m⁻³)</td>
<td>1000</td>
<td>39</td>
<td>928</td>
</tr>
<tr>
<td>Bark</td>
<td>Double Bark Thickness (cm)</td>
<td>1.08</td>
<td>0.25</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>Specific Gravity</td>
<td>0.295</td>
<td>0.029</td>
<td>0.244</td>
</tr>
<tr>
<td></td>
<td>Moisture Content (%)</td>
<td>52</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Green Weight (kg m⁻³)</td>
<td>448</td>
<td>62</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>Percent of Dry Mass (%)</td>
<td>14.8</td>
<td>4.1</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>Percent of Green Volume (%)</td>
<td>24.6</td>
<td>5.7</td>
<td>15.6</td>
</tr>
<tr>
<td>Wood and Bark</td>
<td>Green Weight of Wood and Bark to Volume Wood (kg m⁻³)</td>
<td>1147</td>
<td>68</td>
<td>1043</td>
</tr>
<tr>
<td></td>
<td>Green Weight of Wood and Bark to Volume Wood and Bark (kg m⁻³)</td>
<td>863</td>
<td>47</td>
<td>762</td>
</tr>
</tbody>
</table>
Table 5: Comparison of stand level values for wood and bark properties between loblolly pine and slash pines: whole-disk values based on disk taken at breast height alone.

<table>
<thead>
<tr>
<th>Stand</th>
<th>Species</th>
<th>Specific Gravity</th>
<th>Moisture Content (%)</th>
<th>Green Weight (kg m(^{-3}))</th>
<th>Double Bark Thickness (cm)</th>
<th>Specific Gravity</th>
<th>Moisture Content (%)</th>
<th>Green Weight (kg m(^{-3}))</th>
<th>Percent of Dry Mass (%)</th>
<th>Percent of Green Volume (%)</th>
<th>Green Weight of Wood and Bark to Volume Wood (kg m(^{-3}))</th>
<th>Green Weight of Wood and Bark to Volume Wood and Bark (kg m(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Loblolly</td>
<td>0.556</td>
<td>76</td>
<td>979</td>
<td>1.20</td>
<td>0.268</td>
<td>56</td>
<td>417</td>
<td>13.5</td>
<td>24.5</td>
<td>1115</td>
<td>841</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.526</td>
<td>77</td>
<td>931</td>
<td>0.97</td>
<td>0.328</td>
<td>75</td>
<td>574</td>
<td>15.4</td>
<td>22.6</td>
<td>1099</td>
<td>850</td>
</tr>
<tr>
<td>2</td>
<td>Loblolly</td>
<td>0.560</td>
<td>84</td>
<td>1029</td>
<td>0.97</td>
<td>0.322</td>
<td>55</td>
<td>494</td>
<td>15.1</td>
<td>23.8</td>
<td>1186</td>
<td>902</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.568</td>
<td>77</td>
<td>1005</td>
<td>0.80</td>
<td>0.355</td>
<td>59</td>
<td>566</td>
<td>15.9</td>
<td>23.0</td>
<td>1179</td>
<td>905</td>
</tr>
<tr>
<td>3</td>
<td>Loblolly</td>
<td>0.554</td>
<td>87</td>
<td>1038</td>
<td>1.07</td>
<td>0.292</td>
<td>54</td>
<td>451</td>
<td>14.9</td>
<td>24.9</td>
<td>1186</td>
<td>891</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.563</td>
<td>83</td>
<td>1026</td>
<td>1.13</td>
<td>0.388</td>
<td>46</td>
<td>564</td>
<td>17.6</td>
<td>23.7</td>
<td>1204</td>
<td>917</td>
</tr>
<tr>
<td>4</td>
<td>Loblolly</td>
<td>0.543</td>
<td>94</td>
<td>1049</td>
<td>1.40</td>
<td>0.275</td>
<td>42</td>
<td>393</td>
<td>19.6</td>
<td>32.1</td>
<td>1233</td>
<td>835</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.568</td>
<td>75</td>
<td>995</td>
<td>1.27</td>
<td>0.356</td>
<td>36</td>
<td>486</td>
<td>18.7</td>
<td>26.9</td>
<td>1173</td>
<td>856</td>
</tr>
<tr>
<td>5</td>
<td>Loblolly</td>
<td>0.570</td>
<td>76</td>
<td>998</td>
<td>1.00</td>
<td>0.279</td>
<td>64</td>
<td>457</td>
<td>11.1</td>
<td>20.4</td>
<td>1115</td>
<td>888</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.579</td>
<td>75</td>
<td>1013</td>
<td>0.73</td>
<td>0.362</td>
<td>65</td>
<td>596</td>
<td>11.5</td>
<td>17.2</td>
<td>1136</td>
<td>940</td>
</tr>
<tr>
<td>6</td>
<td>Loblolly</td>
<td>0.567</td>
<td>69</td>
<td>959</td>
<td>0.87</td>
<td>0.285</td>
<td>55</td>
<td>442</td>
<td>10.2</td>
<td>18.5</td>
<td>1060</td>
<td>864</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.594</td>
<td>67</td>
<td>991</td>
<td>1.43</td>
<td>0.375</td>
<td>41</td>
<td>529</td>
<td>18.4</td>
<td>26.3</td>
<td>1181</td>
<td>869</td>
</tr>
<tr>
<td>7</td>
<td>Loblolly</td>
<td>0.563</td>
<td>78</td>
<td>1001</td>
<td>1.30</td>
<td>0.300</td>
<td>41</td>
<td>422</td>
<td>20.7</td>
<td>32.8</td>
<td>1211</td>
<td>812</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.598</td>
<td>74</td>
<td>1040</td>
<td>1.33</td>
<td>0.369</td>
<td>33</td>
<td>490</td>
<td>24.9</td>
<td>35.1</td>
<td>1306</td>
<td>846</td>
</tr>
<tr>
<td>8</td>
<td>Loblolly</td>
<td>0.552</td>
<td>81</td>
<td>1000</td>
<td>0.93</td>
<td>0.311</td>
<td>51</td>
<td>470</td>
<td>11.7</td>
<td>19.3</td>
<td>1110</td>
<td>895</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.555</td>
<td>89</td>
<td>1042</td>
<td>0.63</td>
<td>0.355</td>
<td>48</td>
<td>522</td>
<td>12.4</td>
<td>18.5</td>
<td>1169</td>
<td>940</td>
</tr>
<tr>
<td>9</td>
<td>Loblolly</td>
<td>0.536</td>
<td>81</td>
<td>964</td>
<td>1.10</td>
<td>0.294</td>
<td>44</td>
<td>427</td>
<td>16.7</td>
<td>26.7</td>
<td>1122</td>
<td>821</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.577</td>
<td>75</td>
<td>1010</td>
<td>1.00</td>
<td>0.348</td>
<td>75</td>
<td>609</td>
<td>15.8</td>
<td>23.7</td>
<td>1201</td>
<td>914</td>
</tr>
<tr>
<td>10</td>
<td>Loblolly</td>
<td>0.571</td>
<td>72</td>
<td>984</td>
<td>0.97</td>
<td>0.319</td>
<td>61</td>
<td>513</td>
<td>14.0</td>
<td>22.6</td>
<td>1134</td>
<td>878</td>
</tr>
<tr>
<td></td>
<td>Slash</td>
<td>0.573</td>
<td>77</td>
<td>1012</td>
<td>0.77</td>
<td>0.407</td>
<td>49</td>
<td>605</td>
<td>14.4</td>
<td>19.1</td>
<td>1157</td>
<td>935</td>
</tr>
</tbody>
</table>
Figure 1: Map of stand locations for the study

63x59mm (300 x 300 DPI)
Figure 2: Wood specific gravity (a) and moisture content (b) plotted against relative height along tree bole.

127x63mm (300 x 300 DPI)
Figure 3: Bark specific gravity (a) and moisture content (b) plotted against relative height along tree bole.
Figure 4: Percentage bark plotted against relative height along tree bole.

127x127mm (300 x 300 DPI)