Electronic Supplementary Information:
Thiol-Ene Click Microcontact Printing of Gold Nanoparticles onto Silicon Surfaces

Casey M. Platnich, a,b Abhinandan Banerjee, a Vinayaraj Ozhukil Kollath, c Kunal Karan, c and Simon Trudel ∗ a

a Department of Chemistry and Institute for Quantum Science and Technology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4; b Currently at: Department of Chemistry, McGill University, 800 Sherbrooke St. W., Montreal, QC, Canada, H3A 0B8; c Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada T2N 1N4
E-mail: trudels@ucalgary.ca

Contents of the Supplementary Data

Figure S1 Photographs of Si(100) surfaces water wettability before and after etching
Figure S2 Photographs of Si(100) surfaces before and after blanket, in-solution thiol-ene reaction
Figure S3 SEM of negative control reaction
Fig. S1. Image showing hydrophilic and hydrophobic character of silicon wafer before (left) and after (right) etching with ammonium fluoride.

Fig. S2. Image showing silicon wafer before (left) and after (right) a reaction done under blanket UV exposure, without a stamp. The reacted wafer is clearly matte.

Fig. S3. Negative control reaction sample, wherein no UV light or PDMS stamp was employed. Image shows no NPs bonded to surface. Ink contained 10 mg NPs, 0.25 g DMPA, 1 mL solvent. The ene-terminated Si(100) was immersed in this ink for 1.5 hr.