Local Search and the Explore/Exploit Trade-off in Adult Causal Inferences

by

Erik A. Herbst

A thesis submitted in conformity with the requirements for the degree of Master of Arts
Department of Psychology
University of Toronto

© Copyright by Erik A. Herbst 2017
Local Search and the Explore/Exploit Trade-off in Adult Causal Inferences

Erik Andreas Herbst
Master of Arts
Department of Psychology
University of Toronto
2017

Abstract

We explore how adults learn counterintuitive causal relationships, and whether they discover hypotheses by revising their beliefs incrementally. We examined how adults learned a novel and unusual causal rule when presented with data that initially appeared to conform to a simpler, more salient rule. Adults watched a video of several blocks placed sequentially on a blicket detector, and were then asked to determine the underlying causal structure. In the near condition the true rule was complex, but could be found by making incremental improvements to the simple and salient initial hypothesis. The distant condition was governed by a simpler rule, but to adopt that rule participants had to set aside their initial beliefs, rather than revising them incrementally. Adults performed better in the near condition, despite this rule being more complex, providing some of the first evidence for an explore-exploit trade-off in inference, analogous to the trade-off in active learning.
Acknowledgments

First and above all, I would like to express my sincerest appreciation to Daphna Buchsbaum, my supervisor, for her continued support and invaluable contribution to this project, as well as to our collaborator Chris Lucas for his insightful input. I would also like to thank my committee members, Amy Finn and Wil Cunningham, for overseeing this project. I also appreciate the support of everyone at the CoCoDev Lab at the University of Toronto, with special thanks to Kay Otsubo for her management skills. Finally, deepest thanks to my partner, Dana Dinsmore, for her compassionate encouragement and for making me smile every day. Thank you all.
Table of Contents

Acknowledgments .. iii

Table of Contents .. iv

List of Tables .. vi

List of Figures .. vii

Chapter 1 Introduction ... 1

 1.1 The Development of Causal Reasoning ... 1

 1.2 Bayesian Models of Causal Inference .. 4

 1.3 The Explore-Exploit Trade-Off in Inference ... 7

Chapter 2 Methods ... 10

 2.1 Experiment 1: Investigating the Explore-Exploit Trade-Off 10

 2.1.1 Participants .. 10

 2.1.2 Materials and Procedure .. 10

 2.1.3 Results and Discussion ... 13

 2.2 Experiment 2: A Priori Rule Preference .. 14

 2.2.1 Participants .. 14

 2.2.2 Materials and Procedure .. 15

 2.2.3 Results and Discussion ... 15

Chapter 3 General Discussion .. 16

 3.1 Discussion .. 16

 3.2 Future Steps ... 16

References .. 19

Appendix A. (Figures) .. 23

Appendix B. (Tables) .. 24
List of Tables

Table 1. Mean scores and SE for forced-choice task. Total scores range from 0 to 4, and scores for initial rule-consistent and initial rule-violating blocks range from 0 to 2.

Table 2. Mean scores and SE for blicket rating task. Total scores range from -24 to 24, and scores in each sub-category range from -12 to 12.
List of Figures

Figure 1. Examples of blickets in the near condition (left) and the distant condition (right).

Figure 2. Scores on the forced-choice task as a function of rule consistency. Scores in each category range from 0 to 2.
Chapter 1
Introduction

Any time we make plans, predict the future, or attempt to understand why events occurred in the past, we are relying on causal knowledge. In acquiring this knowledge, we must draw conclusions from sparse, noisy, and ambiguous evidence. We gain the ability to make sense of this limited information at an early age, with causal thinking showing signs of emergence even in infancy (Sobel & Kirkham, 2006; 2007; Walker & Gopnik, 2014). By adulthood, our frameworks for interpreting causal phenomena become much more complex and able to accommodate diverse areas of knowledge (Kemp, Goodman, & Tenenbaum, 2007).

Despite its usefulness, sometimes our ability to generalize from past causal inferences can lead us astray, as in the case where we encounter a new causal relationship that is rare or strange by the standards of our past experience. For instance, we might expect that either of two switches will turn on a lamp, when in fact the lamp turns on when the switches are in matched positions. While our causal learning process is generally accurate and adaptive (e.g., Griffiths & Tenenbaum, 2005), in the current paper we claim – in the spirit of previous “rational process” models (e.g. Sanborn, Griffiths, & Navarro, 2010) – that human causal beliefs are updated in a limited or local fashion that is efficient but subject to systematic failures under certain conditions. This is especially true when the initial hypothesis is at a local optimum – the best hypothesis within reach, but not the best overall – and when the true causal structure is distant from our initial hypothesis in some hypothesis space. Suppose you break out in a rash every time you buy your favourite candy bar from a vending machine. After searching for the proper cause, you would probably conclude that you are allergic to the candy as soon as it comes to mind. You may be unlikely to consider that you are actually reacting to the coins used to purchase the candy bar, even if this is indeed the case. In this case, discovering the real cause requires abandoning your working hypothesis, rather than just incrementally refining it.

1.1 The Development of Causal Reasoning

Contrary to Piaget’s (1951) assumption that young children are precausal—that they view similar events as teleologically, rather than causally, related—children as young as toddlers have demonstrated causal reasoning abilities (e.g. Gopnik et al., 2004; Gopnik & Sobel, 2000;
Recent studies examining causal inference, especially in children, use the *blicket detector* paradigm developed by Gopnik and Sobel (2000), whereby a ‘blicket machine’ activates when certain blocks are placed on it. Additional research with blicket detectors has shown that even children 18 months old can use relatively small amounts of information to infer larger causal principles, which they can use to predict novel causal situations (Walker & Gopnik, 2014). Thus, in contrast to Piaget’s assumptions, children readily view their environment in terms of causes and effects.

Nevertheless, another of Piaget’s legacies about children’s learning remains largely relevant to modern developmental research—that children learn by combining their experiences with their prior beliefs in a constructivist manner. Although the particulars of Piagetian constructivism have been fiercely debated (see Newcombe, 2011; Xu, 2007), the constructivist spirit has guided much of developmental research on causal learning in recent years. An influential theory in the constructivist vein, the *theory theory*, postulated that children utilize a naïve form of the scientific method in their everyday conceptions of the world and the mind (Carey, 1985; Gopnik & Meltzoff, 1997; Gopnik & Wellman, 1994). Specifically, the theory theory claimed that, throughout development, children construct theories about the world based on intuition, then revise these theories in accordance with new information. These theories allow children to draw patterns from phenomena they observe in the world, then use these patterns to predict future events.

While theory theory is useful in conceptualizing how children develop their understanding of causal relationships, it does not offer much detail on the specific mechanisms through which this theory revision takes place. Nevertheless, the solutions children generate to problems of causality may be affected by their lack of knowledge about the world and underdeveloped cognitive abilities. Possibly as a result of this, responses to problem-solving tasks appear highly unfocused and volatile; there is considerable variation in children’s responses, including between responses to the same task (Fischer & Bidell, 2006; Siegler, 1994, 2007). Yet evidence from blicket studies shows that children learn about causal relationships remarkably quickly (Gopnik & Sobel, 2000; Walker & Gopnik, 2014). This suggests that young children’s inference strategies are successful enough to overcome the children’s cognitive limitations.
Indeed, these inference strategies used by younger children may be qualitatively different than those of older children and adults. This may explain recent studies showing that, in some specific cases, causal learning task performance decreased with age. In research by Seiver and colleagues (2013), six-year-old children demonstrated a “trait bias” when making causal attributions to agents, even when the evidence showed that the agents were reacting differently to different situations. Four-year-old children, in contrast, did not show such a bias, demonstrating that they were more sensitive to situational evidence. Finally, 18-30-month-old children were more adept than three-year-olds at determining that two similar blocks would activate a Blicket detector, whereas two different blocks would not (Walker & Gopnik, 2014). This evidence seems to indicate, at least, that younger learners can be more open-minded than older ones when solving certain causal tasks.

Taking this a step further, there may even conceivably be instances in which children make better causal inferences than adults, even as most other learning outcomes improve with age. Lucas, Bridgers, Griffiths, and Gopnik (2014) found that young children were more likely than adults to discover an unusual conjunctive causal relationship. Children and adults were tasked with inferring a causal principle after viewing a machine that activated when certain blocks or block combinations were placed on top of it. Even after viewing evidence that blocks only activated the machine in specific pairs (and not individually), adults had more difficulty than children with generalizing this principle to new blocks. This suggests that children and adults may be making inferences in fundamentally different ways.

Even if children do not differ qualitatively from adults in how they formulate and revise hypotheses, part of this unexpected variation may be related to the diversity of information that children and adults consider. That is, young children’s unconventional solutions may come from a tendency toward taking larger cognitive leaps when making local edits to hypotheses. This aligns with our basic intuitions about how children should learn; children are expected to change their theories about the world radically and frequently, in accordance with what theory theory predicts (Carey, 1985; Gopnik & Meltzoff, 1997; Gopnik & Wellman, 1994). In contrast, adults are expected to maintain a sort of consistency in beliefs and behaviours. This difference in consistency may explain why older children are more likely than younger children to use prior knowledge over evidence when making causal inferences (Seiver et al., 2013). Children’s change
toward stable attributions for others’ actions reflects a shift toward stability in their own cognitive processes.

The difference in learning style between children and adults seems to have a biological and evolutionary basis; human children have a much longer period of immaturity than other animals—including other primate relatives—and there is a general large-scale correlation between certain cognitive abilities, brain size, and length of immaturity across many species of animals, particularly mammals (Weisbecker & Goswami, 2010). Indeed, children’s tendency toward exploratory decision-making is likely related to an immature prefrontal cortex; evidence shows that the medial prefrontal network is largely implicated in exploitative learning (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006). This prefrontal network develops rather late—in children, synaptic contacts form much more slowly and synapse elimination occurs much later in the prefrontal cortex than in the auditory cortex (Huttenlocher & Dabholkar, 1997). This contrasts with synaptic development in rhesus monkeys, which occurs at identical rates in different prefrontal, somatosensory, visual, and motor areas (Rakic, Bourgeois, Eckenhoff, Zecevic, & Goldman-Rakic, 1986). This heterochronous synapse formation may play some role in children’s explorative learning style.

Researchers suggest that this developmental difference may be advantageous—the extended period of free play and exploration associated with children’s extended immaturity may give children more opportunities to explore unusual possibilities (Buchsbaum, Bridgers, Weisberg, & Gopnik, 2012). This period may likely be crucial for the development of counterfactual reasoning and causal learning—specifically, Buchsbaum and colleagues found a relationship between children’s reliance on causal relationships while pretending and their counterfactual cognitive ability. Children’s relatively flexible cognition may allow them to produce a broader variety of novel solutions to a given task. Indeed, children’s cognitive flexibility may account for specific advantages over adults in certain forms of learning—for example, their superior fast-mapping ability when encountering novel words (Carey & Bartlett, 1978; Gullberg, Roberts, Dimroth, Veroude, & Indefrey, 2010).

1.2 Bayesian Models of Causal Inference

Several researchers have attempted to explain learning of novel causal relationships using hierarchical Bayesian models of inference (e.g. Griffiths, Sobel, Tenenbaum, & Gopnik, 2011;
Griffiths, Kemp, & Tenenbaum, 2008). Recent evidence demonstrates that adults and children can successfully modify their causal beliefs in light of new and surprising evidence in a manner that suggests Bayesian inference strategies (e.g., Griffiths, Sobel, Tenenbaum, & Gopnik, 2011; Lucas, Bridgers, Griffiths, & Gopnik, 2014). Through this process, learners also create and update higher-level models of how causal relationships operate in general. Regardless of whether human cognition functions exactly this way, hierarchical Bayesian models have accurately predicted human causal learning (Kemp, Goodman, & Tenenbaum, 2007; Lu, Yuille, Lijeholm, Cheng, & Holyoak, 2006; Lucas & Griffiths, 2010; Ullman, Goodman, & Tenenbaum, 2012).

Although Bayesian models accurately capture many aspects of human causal reasoning, they may not fully account for adults’ relative difficulties in learning more unusual types of causal relationships, as in Lucas and colleagues’ (2014) finding that children outperformed adults when generalizing an unusual conjunctive causal relationship. One possibility for this finding is that adults are more biased by prior experiences—as they have observed that conjunctive relationships are relatively rare—which leads them to demand strong evidence before they infer a conjunctive relationship is present.

Counter-intuitively, more knowledgeable and inflexible learners may have more difficulty learning new information if their knowledge of certain principles impedes how they interpret new data. Real-world causal relationships often have multiple nodes, with some more salient than others. Research has found that, when adults classify stimuli into categories, prior knowledge determines which stimulus features are the most salient (e.g. Williams & Lombrozo, 2010, 2013). For example, in a study of university students, describing a set of robots as “indoor” or “outdoor” robots made participants more likely to classify them based on the shape of their feet, versus the length of their antennae (Williams & Lombrozo, 2010). This may be because the prior knowledge is used to limit the number of hypotheses that the learner is willing to consider (Tenenbaum, Griffiths, & Kemp, 2006). In other words, adults have a more extensive set of overhypotheses, or hypotheses that constrain more specific hypotheses based on their likelihood (Kemp, Perfors, & Tenenbaum, 2007).

Indeed, if cognition operates via Bayesian principles, there are conceivably instances in which rigid commitment to a prior may preclude learners from uncovering the true nature of a causal relationship. However, this may not apply in novel causal situations with which adults
have limited experience. Moreover, adults are cognitively different than children beyond simply having more experience, so differences in causal reasoning may in fact be the by-product of some developmental change.

As an alternative to simply having different priors, adults’ relative difficulty with conjunctive causal relationships may be explained in terms of the process by which they explore and weigh new hypotheses in light of their current beliefs. It is typically impossible to evaluate all potential hypotheses (of which there may be an infinite number). Bayesian inference is often intractable in practice for complex problems, so human inferences must sometimes depart from the Bayesian ideal. Nonetheless, there is evidence that people may be resource rational observers, making approximately Bayesian inferences in ways that make efficient use of limited time and memory (Bonawitz, Denison, Gopnik, & Griffiths, 2014; Sanborn, Griffiths, & Navarro, 2010). As for possible processes underlying these approximations, some empirical phenomena, such as order effects, offer clues. If learners make inferences from a complete set of data, as traditional Bayesian models assume, then they should not be influenced by the order in which stimuli are presented. Nevertheless, humans are sensitive to presentation order (Danks & Schwartz, 2006; Sanborn, Griffiths, & Navarro, 2010).

One explanation for these order effects is that people arrive at solutions by considering a small number of hypotheses at any single moment in time, and updating or replacing them sequentially with more data – sometimes losing information and leading to small but systematic errors. The subset of potential hypotheses may be small and, in the extreme, just one hypothesis could be considered at a time. For example, in certain causal learning situations, children and adults might employ “win-stay, lose-shift” (or “lose-sample”) strategies, whereby consistent evidence may reinforce a (potentially erroneous) hypothesis over time and inconsistent evidence may trigger belief revision (Bonawitz, Denison, Gopnik, & Griffiths, 2014). More recently, Bayesian process models have been proposed to explain learning estimation techniques—and their associated patterns of errors—by drawing analogies to Monte Carlo sampling methods that permit tractable and efficient inference in applied statistics and machine learning (Abbott, Hamrick, & Griffiths, 2013; Shi, Griffiths, Feldman, & Sanborn, 2010).

Inference techniques are often modelled using Monte Carlo methods that update sequentially and incrementally. These methods allow hypotheses to be revised by sampling from
the posterior, without computing the posterior distribution in its entirety. Markov chain Monte Carlo sampling is a popular and efficient subclass of Monte Carlo methods, and it is marked by a degree of stickiness or inertia, in which people hew more closely to their initial hypotheses than a truly optimal Bayesian learner would. This family of models predicts that individuals will tend toward inferences that are similar to their prior beliefs. For example, one study showed that when people made inferences about a causal system, they tended toward solutions that required the fewest single edits to their initial hypothesis, where a single edit is an addition, subtraction, or reversal of a causal link (Bramley, Dayan, Griffiths, & Lagnado, 2017). Therefore, causal process models can account for multiple limitations on causal learning, and have recently been shown to explain phenomena such as classical anchoring (Lieder, Griffiths, Huys, & Goodman, 2017). Learners can be constrained not only by priors, but also the similarity of candidate hypotheses to their current beliefs, perhaps precluding them from finding too-distant hypotheses.

1.3 The Explore-Exploit Trade-Off in Inference

Gopnik and colleagues (Gopnik, Griffiths, & Lucas, 2015) recently conjectured that inference by sampling models might explain developmental differences in causal learning, suggesting that young children’s relative cognitive flexibility may be advantageous when searching for solutions to causal problems. Greater flexibility may shield children from cognitive biases present in adults, which would explain children’s relatively high performance compared to adults in Lucas and colleagues' (2014) study.

Therefore, these findings could reflect a cognitive tradeoff in development that affects how learners search through hypotheses. When presented with a wide range of possibilities, individuals must often decide whether to employ a general, shallow search or a narrow, deep one. This decision is analogous to the explore-exploit tradeoff, whereby decision-makers must allocate cognitive resources to either exploit previous knowledge or explore alternatives (Sutton & Barto, 1998). Adults may be more inclined to exploit, by searching nearby solutions extensively—and less likely to explore hypotheses that require unusual, low-probability edits to the current hypothesis. With limitations on the number of hypotheses a learner can consider, exploitation-biased adult learners could plausibly benefit from focusing cognitive resources on hypotheses that are refinements of an initial proposal that is plausible and informed by long experience. This will increase efficiency of finding adequate solutions but potentially limit
access to distant alternatives. Conversely, exploration-focused learners (young children, perhaps) may spread out their search over a more diverse range of possibilities. Although this approach sacrifices the ability to efficiently refine already-reasonable hypotheses, it may grant access to unusual solutions that would be unreachable with a more conservative search.

Thus, the inferential explore-exploit trade-off may have interesting implications for the process of selecting between competing hypotheses. This selection process has been modelled using Bayesian algorithms for both children and adults (Bonawitz, Denison, Gopnik, & Griffiths, 2014; Denison, Bonawitz, Gopnik, & Griffiths, 2013; Lieder, Griffiths, & Goodman, 2012; Sanborn, Griffiths, & Navarro, 2010), but relatively little previous work has examined adults’ potential tendencies toward exploitation.

As one possible example of how hypothesis search may reflect an exploitation bias, Gopnik and colleagues have likened human belief updating to simulated annealing; just as the heating and gradual cooling of metal can increase its malleability, so can a gradual “cooling” of an inference method corresponding to an increasingly conservative search policy lead to better inferences (Gopnik, Griffiths, & Lucas, 2015; Lucas, Bridgers, Griffiths, & Gopnik, 2014). For instance, while young children may use high-temperature searches, considering a wide range of hypotheses with relatively equal probability, adults’ searches are “cooler” and narrower in scope. Although commitment to priors may still matter, simulated annealing allows us to examine which types of hypotheses are considered. High-temperature searches are more likely to discard adequate hypotheses, but may allow individuals to escape local optima and discover unlikely solutions that are potentially better. In contrast, low-temperature searches can quickly converge to good solutions if fewer low-probability edits are required to get there, but may otherwise get trapped in local optima. With this in mind, adults may have more difficulty discovering unusual causal relationships because their search is too focused and too close to their initial guesses to accommodate distant ideas.

The purpose of our current studies is to test the hypothesis that belief updating in adults is exploitation-biased. To accomplish this, we designed a task encouraging participants to generate a particular initial hypothesis about a novel causal relationship. Evidence that contradicted this hypothesis was then presented, causing participants to modify their beliefs. The true causal structure took one of two forms corresponding to two experimental conditions. In the near
condition, the correct causal structure was closer to the initial hypothesis but designed to be relatively complex. In the distant condition, the correct causal structure was simpler but possibly harder to reach when making incremental changes from the initial hypothesis, which is a local optimum. Thus, we hoped to determine the breadth of hypotheses that participants were willing to entertain. If adults’ search process is more exploitation-biased, we should expect the near-hypothesis solution would be more easily found than the distant one, even if both rules are a priori equally unlikely. However, if adults’ failure to infer unlikely causal relationships is simply due to the low prior probability that they place on these relationships, then they should be equally unlikely to consider either solution.
Chapter 2
Methods

2.1 Experiment 1: Investigating the Explore-Exploit Trade-Off

2.1.1 Participants

Participants were 90 adult US residents, recruited through Amazon Mechanical Turk and paid a base rate of $1 for their time. An additional $1 bonus was given to the top 10% performers as an additional incentive. Participants were divided randomly among near (n = 45) and distant (n = 45) conditions. Six participants from the near condition and seven from the distant condition were excluded due to failure to correctly answer attention manipulation tasks.

2.1.2 Materials and Procedure

The methods used in this study are similar to those used in previous blicket tasks (e.g. Gopnik & Sobel, 2000), except that animated video stimuli were presented online using Qualtrics survey software (similar to Buchsbaum et al., 2012). Participants were asked to examine several blocks and determine which blocks are blickets. They were informed that blickets are blocks that activate the blicket detector, and were shown a video of an animated blicket detector activating and not activating. Participants then watched a five-minute animation depicting 20 blocks being consecutively placed onto the blicket detector. If the block was a blicket, the detector lit up and a sound played. The blocks were sorted into blicket/non-blicket categories and left on screen for participants to study.

Whether a block was a blicket depended on specific aspects of the block pattern. Each block had a coloured background (red or blue) and several small red or blue triangles in a fixed pattern (see Figure 1). The block pattern was such that the background colour was the most obvious and visually striking feature. For the first 15 blocks (the initial rule-consistent blocks), the background colour appeared to determine whether the blocks activated the machine—i.e. blocks with one background colour consistently activated the machine, while the others did not. Inspired by an experimental manipulation in Williams and Lombrozo (2010; 2013), this was designed to lead participants to an initial causal hypothesis based on the objects’ most salient feature. The final five blocks (the initial rule-violating blocks), however, violated this initial hypothesis; the blocks that did and did not activate the machine had the opposite background
colour as before. Thus, participants needed to modify their initial hypothesis to capture the optimal solution.

The true rule separating blickets from non-blickets varied based on condition. This true rule determined whether a block was a blicket 100% of the time. In the near condition, the background colour was related to whether a block was a blicket, whereas in the distant condition the background colour was unrelated. Each block had five binary features (Figure 1), which could vary by colour on each block (background, corners, centre-left triangle, centre-right triangle, and border), giving a total of 32 different colour combinations. In the near condition, blocks were blickets based on a combination of the background colour and the colour of two secondary features. In the distant condition, only the colour of these two secondary features determined whether a block was a blicket, while the background colour was irrelevant.

Thus, the five features could be labeled as follows: one primary feature (A), two relevant secondary features (B and C), and two irrelevant secondary features (D and E). In the distant condition, the optimal rule for determining whether a block is a blicket—that is, the simplest rule that perfectly explains the data—can be written as $R = (B \equiv C)$, whereas the optimal rule in the near condition can be written as $R = (A \cap \neg B) \cup (\neg A \cap \neg C)$. These rules were designed to seem arbitrary to naïve participants and minimize the role of the participants’ prior knowledge. In the near condition, there is a consistently-improving path of single edits to transition from the initial hypothesis, $R = A$, to the correct rule, where a single edit consists of adding or subtracting a variable or changing an operator (e.g. changing $R = A$ to $R = A \cap B$; Goodman & Tenenbaum, 2008 use a similar approach for searching a hypothesis space). In the distant condition, the single-edit path to the correct rule requires edits that initially worsen the hypothesis (e.g. removing A as a relevant variable). Participants must therefore ignore the ineffectiveness of these local edits and keep exploring to find the correct solution. Thus, if adults use a Bayesian single-edit search process with an exploit bias, participants should be less likely to abandon $R = A$, and thus should perform more poorly in the distant condition, where $R = A$ is the local optimum.

The lists of blocks seen by participants in the near and distant conditions were generated randomly with the following constraints: a) there were ample block feature combinations that participants did not see, so that they could be tested on these blocks later, and b) the rules and
edit paths conformed to the specifications in the previous paragraph. Thus, the final sets of blocks were as follows: near condition participants saw 11 blickets (3 initial rule-violating) and 9 non-blickets (2 initial rule-violating), whereas distant condition participants saw 10 blickets (2 initial rule-violating) and 10 non-blickets (3 initial rule-violating). The differences in block numbers were necessary due to the constraints of the conditions.

Following the presentation of all of the blickets, participants saw a blicket rating task, in which they were asked to judge whether a randomized series of eight blocks were blickets. For each block, participants rated how certain they were that it was, or was not, a blicket, on a seven-point Likert scale ranging from “definitely a blicket” to “definitely not a blicket”. Blocks were balanced by background colour, blicket/non-blicket status, and whether they had already been presented in the observation stage. Participants received a score between -3 and 3 for each block based on accuracy and certainty, and the sum of these scores determined their final score for this task. Next, participants completed a forced-choice task, where they chose which of two blocks was more likely to activate the blicket detector, for a series of four pairs. Blocks were selected randomly such that there were an equal number of initial rule-consistent and initial rule-violating blocks, and blocks in each pair differed from each other in background colour and whether they were a blicket. Participants received a point for each correct block judgment.

Afterwards, the participants were asked to describe the causal rule they had inferred. They were then told to imagine that a new rule was suggested by a friend, and asked if they preferred this rule over their own. This rule always represented the correct causal structure. The purpose of this question was to ensure that any differences between the two conditions were not due to participants finding the near rule inherently more plausible or likely than the distant one. The participants’ rule preference was measured using a seven-point scale. Finally, each participant received questions to test their task comprehension and an instructional manipulation task to control for inattention, similar to the one used by Oppenheimer, Meyvis, and Davidenko (2009).
2.1.3 Results and Discussion

If adults’ hypothesis search strategy is exploitation-biased, participants in the near condition will perform better on both tasks than those in the distant condition. The results supported our predictions. For the forced-choice task, a 2x2 ANOVA was run with condition (distant/near) and rule consistency (initial rule-consistent/violating) as factors (see Figure 2, or Table 1 for a score summary). Near condition participants outscored those in the distant condition, F(1, 84) = 6.46, p = .01, MSE = 0.26. Participants also scored higher for initial rule-consistent blocks, than for rule-violating blocks, F(1, 84) = 226, p < .001, MSE = 0.34. There was no significant interaction effect, F(1, 84) = 0.154, p > .69, MSE = 0.34.

For the blicket rating task, a 2x2 mixed ANOVA (condition x rule consistency) was run (see Table 2 for a score summary). The analysis found that participants were much more likely to confidently identify initial rule-consistent blocks than initial rule-violating blocks F(1, 84) = 131, p < .001, MSE = 15.32, suggesting that the salience manipulation was effective and participants were influenced by the background colour. Supporting our forced-choice results, there was a marginally significant effect of condition, F(1, 84) = 3.77, p = .06, MSE = 11.87, with a mean score of 7.51 for the near condition and 4.63 for the distant condition (scores ranged from -24 to 24).

Intriguingly, and unlike in the forced-choice task, there was also a significant interaction effect, F(1, 84) = 3.34, p = .04, MSE = 15.32. This is a result of participants in the near condition performing better than those in the distant condition on initial rule-consistent blocks, but equally poorly on initial rule-violating blocks. To assess whether this interaction was due to differences in confidence for some blocks, an additional 2x2 mixed ANOVA (condition x rule consistency) was run to investigate participants’ certainty ratings when evaluating blocks. The analysis showed no main effect of condition, F(1, 84) = 2.30, p > .13, MSE = 0.69. Mean confidence ratings were relatively near ceiling in both conditions (greater than 2 out of 3), which may partially explain the lack of a main effect. However, participants were more certain of their answers when rating initial rule-consistent blocks than when rating rule-violating blocks, F(1, 84) = 22.0, p < .001, MSE = 0.32. There was also a highly significant interaction effect between condition and rule-consistency, F(1, 84) = 13.1, p < .001, MSE = 0.32, driven by participants in the near condition having more certainty for initial rule-consistent blocks than for rule-
inconsistent blocks, suggesting that while participants in the near condition were better able to correctly categorize both initial rule-violating and initial rule-consistent blocks, they were most confident about the latter.

Additional one-sample t-tests examined whether participants scored better than would be expected by chance. For the forced-choice task, participants correctly classified blocks as blickets and non-blickets significantly better than chance in the near condition, \(t(42) = 5.82, p < .001 \), but not in the distant condition, \(t(42) = 1.31, p = 0.20 \). In the blicket rating task, however, participants classified blocks better than chance in both the near condition, \(t(42) = 7.69, p < .001 \), and the distant condition, \(t(42) = 4.13, p < .001 \). The at-chance performance of distant condition participants in the forced-choice task may simply reflect the low number of trials compared to the blicket rating task.

Finally, we looked at participants’ preference for the correct rule over their own. Participants in the distant condition significantly preferred the correct friend’s rule over their own rule, \(t(42) = 4.78, p < .001 \), while participants in the near condition did not, \(t(42) = 1.55, p = .13 \). Participants in the distant condition also preferred the friend’s rule significantly more than those in the near condition, \(t(75) = 2.09, p = .04 \). This supports our hypothesis that participants in the distant condition had not previously considered the distant rule, rather than that they considered it, but dismissed it as unlikely.

2.2 Experiment 2: A Priori Rule Preference

Although the main study compared the extent to which participants preferred the correct rule over their own, it did not examine the rules in both conditions side-by-side. This study investigated adults’ a priori preference for either the near or the distant rule without differentiating data. This was to confirm that differences in causal learning and rule preference between conditions in Experiment 1 were not due to an intuitive preference for the near rule before seeing any data.

2.2.1 Participants

Participants were 51 adult US residents, recruited through Amazon Mechanical Turk (MTurk) and paid a base rate of $0.50 for their time.
2.2.2 Materials and Procedure

As in the previous study, participants were told that blickets were blocks that activated the blicket detector, and saw an animated blicket detector activating and not activating. Unlike the previous study, however, participants only saw one block placed on the machine, causing it to activate. They were then told the two possible rules, and that both rules accurately described this block, but that only one rule was the correct rule for identifying blocks that activate the machine. Participants were asked to choose which rule they thought was more likely to be correct. These rules were identical to the near rule and the distant rule from the previous study, and the blicket that participants saw was chosen from a set of blocks that conformed to both rules. Finally, after selecting a rule, participants explained why they chose that rule and rated their confidence in their decision, ranging from 1 (just guessing) to 7 (completely certain). This confidence rating was turned into a score ranging from -7 (completely certain the near rule is correct) to 7 (completely certain the distant rule is correct) for statistical analysis.

2.2.3 Results and Discussion

Of the 51 participants, 22 preferred the near rule and 29 preferred the distant rule, p = .41, exact binomial test. A one-sample t-test demonstrated that the rule preference scores, M = 0.25, SE = 0.50, did not significantly differ from chance, t(49) = 0.71, p = 0.48. Thus, participants did not prefer one rule over the other, suggesting that it was not an a priori preference for the near rule driving the results of Experiment 1.
Chapter 3
General Discussion

3.1 Discussion

The findings obtained by these studies lend support to the exploitation-biased search hypothesis. We expect that exploitation-biased searches of the hypothesis space will be more likely to discover rules close to the initial hypothesis, and less likely to discover more distant rules, even if they are less complex. As predicted, participants were more accurate at classifying blocks in the near condition than the distant condition. This is especially notable given that participants in Experiment 2 found both rules equally a priori plausible, which supports that the near rule is at least as complex as the distant rule. This in turn makes it less likely that the differences between conditions can be explained by differently-weighted prior probabilities.

Participants performed better in the near condition, where the true rule was arguably more complex, but was comparatively easier to discover from the salient starting point due to the consistently-improving edit path, than in the distant condition, where the true rule was simpler, but where the salient rule was a local optimum. This suggests that adults are searching through their hypothesis space in an exploitation-biased manner.

Nevertheless, participants were better able to identify initial rule-consistent blocks than initial rule-violating ones in both tasks. This suggests that the strength of one’s priors may still play a role in conjunction with the exploitation bias. However, this difference in performance suggests intriguing future research avenues—in particular, the finding in the blicket rating task that participants in the near condition scored higher than those in the distant condition on initial rule-consistent but not initial rule-violating blocks. This seems to be driven largely by participants’ relative certainty toward initial rule-consistent blocks in the near condition, rather than their accuracy at categorizing the blocks (as measured by the forced choice task). Future studies might assess how nearness to an initial hypothesis affects the certainty of judgments of causal relationships.

3.2 Future Steps

It is still unclear, however, if these difficulties in discovering certain causal relationships are the result of a developmental process. Consequently, we plan to expand this study to directly
compare adults with children, to examine whether children possess these same search-related
difficulties. If these findings are the result of a developmental shift toward exploitation-based
search strategies, then exploration-oriented children could perform just as well—if not better—than adults in tasks such as those in this study. Children should also perform equally well in both experimental conditions, or perhaps even better in the distant condition than in the near one. Particularly, this may be the case if children see the near rule as a priori less likely. Both conditions will involve conjunctive relationships, which children may be more adept than adults at discovering (Lucas et al., 2014). However, we predict that adults will be unable to move past local optima, as their inferences will be more constrained (Tenenbaum, Griffiths, & Kemp, 2006). More specifically, adults should be less willing to ignore the salient variable A, despite evidence in the experimental condition that suggests it does not play a causal role.

If children demonstrate a superior ability on the blicket tasks, a potential addition to this experiment may examine if pretend play might enhance children’s ability. As children who engage in more pretend play tend to show more advanced counterfactual reasoning skills (Buchsbaum et al., 2014), they may in turn be more likely to reason through more remote causal possibilities. Thus, if child participants are asked to imagine that a very simple (i.e. one-feature) causal rule determines whether a pretend blicket detector activates, we may predict improved performance on subsequent real blicket detector trials. When comparing children’s and adults’ performance, it may also be useful to note differences in time spent on each task, as it might generate additional insights about their hypothesis search process. Although participants in the current studies had unlimited time to complete each task, timing data were not recorded.

In the future, it may be useful to develop a more explicit process model to measure hypothesis distance. Although the near-hypothesis rule is closer to the salient hypothesis, in that adding and subtracting particular predicates improves the hypothesis toward the correct rule, this may not accurately represent how individuals process locality. In other words, we lack a precise model for how people move between rules, and thus exactly how far \(R = (B ==C) \) is from \(R = A \), and how much harder it is to find \(R = (A \cap \neg B) \cup (\neg A \cap \neg C) \). Such a model might follow the Rational Rules paradigm developed by Goodman, Tenenbaum, Feldman, and Griffiths (2007), which accounts for rule learning by calculating the probability that specific hypotheses will be derived from certain priors. Currently, Goodman and colleagues’ model allows for only two free parameters: the outliers one is willing to accept (\(b \)) and the noise of the model (\(\eta \)), but could
certainly be adapted such that the probability distribution of solutions will also vary based on the “heat” of the hypothesis search. We should expect that the tendency to stay with or abandon a suboptimal hypothesis is related to this search temperature. That is, both children and adult cognition should be well-approximated by Bayesian models, but the difference in performance will be primarily a function of the smoothness of the probability distributions of their hypotheses. In future experiments, this process model will need to be clarified.

Overall, our results demonstrating that adults are able to discover a true causal structure nearer to an initial hypothesis more readily than a distant causal structure of equal or greater complexity provides compelling initial evidence for an explore-exploit trade-off in causal inferences. This may help inform future research on how individuals generate new hypotheses about everyday causal interactions.
References

Gopnik, A., Griffiths, T. L., & Lucas, C. G. (2015). When younger learners can be better (or at least more open-minded) than older ones. *Current Directions in Psychological Science, 24*(2), 87-92.

Lucas, C. G., Bridgers, S., Griffiths, T. L., & Gopnik, A. (2014). When children are better (or at least more open-minded) learners than adults: Developmental differences in learning the forms of causal relationships. *Cognition, 131*(2), 284-299.

Seiver, E., Gopnik, A., & Goodman, N. D. (2013). Did she jump because she was the big sister or because the trampoline was safe? Causal inference and the development of social attribution. *Child development, 84*(2), 443-454.

Figure 1. Examples of blickets in the near condition (left) and the distant condition (right).

Figure 2. Scores on the forced-choice task as a function of rule consistency. Scores in each category range from 0 to 2.
Appendix B. (Tables)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Near</th>
<th>Distant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>2.53(±0.10)</td>
<td>2.24(±0.12)</td>
</tr>
<tr>
<td>Rule-consistent</td>
<td>1.90(±0.08)</td>
<td>1.82(±0.07)</td>
</tr>
<tr>
<td>Rule-violating</td>
<td>0.77(±0.13)</td>
<td>0.42(±0.07)</td>
</tr>
</tbody>
</table>

Table 1. Mean scores and SE for forced-choice task. Total scores range from 0 to 4, and scores for initial rule-consistent and initial rule-violating blocks range from 0 to 2.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Near</th>
<th>Distant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>8.00(±1.04)</td>
<td>4.87(±1.26)</td>
</tr>
<tr>
<td>Rule-consistent</td>
<td>9.59(±0.51)</td>
<td>6.39(±0.72)</td>
</tr>
<tr>
<td>Rule-violating</td>
<td>-1.59(±1.01)</td>
<td>-1.53(±1.06)</td>
</tr>
</tbody>
</table>

Table 2. Mean scores and SE for blicket rating task. Total scores range from -24 to 24, and scores in each sub-category range from -12 to 12.