Age-related decline in endurance running performance – An example of a multiple World records holder

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Applied Physiology, Nutrition, and Metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>apnm-2017-0298.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Brief communication</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>28-Jul-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Lepers, Romuald; INSERM U1093 UFR STAPS DIJON</td>
</tr>
<tr>
<td></td>
<td>Cattagni, Thomas; Laboratory Movement,</td>
</tr>
<tr>
<td></td>
<td>Interactions, Performance EA 4334</td>
</tr>
<tr>
<td>Is the invited manuscript for</td>
<td></td>
</tr>
<tr>
<td>consideration in a Special</td>
<td></td>
</tr>
<tr>
<td>Issue?:</td>
<td></td>
</tr>
<tr>
<td>Keyword:</td>
<td>Case report, master athlete, running < sports,</td>
</tr>
<tr>
<td></td>
<td>aging, marathon</td>
</tr>
</tbody>
</table>

https://mc06.manuscriptcentral.com/apnm-pubs
Age-related decline in endurance running performance –
An example of a multiple World records holder

Romuald Lepers¹, Thomas Cattagni²

¹CAPS UMR1093, INSERM, Univ. Bourgogne-Franche Comté, F-21000 Dijon, France.
Email : romuald.lepers@u-bourgogne.fr

²Laboratory Movement, Interactions, Performance EA 4334, University of Nantes, UFR
STAPS, Nantes, France. Email : thomas.cattagni@univ-nantes.fr

Article type: Brief communication

Corresponding author:
Pr. Romuald Lepers
Laboratoire INSERM U1093 - Cognition Action et Plasticité Sensorimotrice
Faculté des Sciences du Sport
Université de Bourgogne
BP 27 877, Dijon F-21078, France
Email: romuald.lepers@u-bourgogne.fr
Tel: +33.380396760
Fax : +33.380396702
Abstract

This study examined the age-related decline in endurance running performance of one of the greatest master runners ever, Ed Whitlock. His running performances from 1500 m to marathon were analyzed for five periods of 5 years from 65-69 years to 85-89 years. Despite exceptional running performances for his advanced age, the rate of decline in his performances increased after 80 years and was drastically amplified after 85 years.

Key words: Case report, master athlete, running, aging, marathon
Introduction

Age-related decline in endurance performance has been well described in literature (Tanaka & Seals, 2003, Reaburn & Dascombe, 2008; Lepers & Cattagni, 2012; Lepers et al., 2016a). The trajectory of this decline is relatively linear since the fourth decade and become exponential after the seventh decade (Rittweger et al., 2009). This accelerated decline sometimes referred to as a “breakpoint” may be explained by several factors such as a reduction of the pool of older competitors, a decrease in the amount and intensity of training or a fading of integrative physiological capacity though training level is maintained (Lazarus & Harridge, 2017).

The age-related decline in athletic performances is generally assessed by analyzing, for each age-group, world record performances or top finishers in one single event such as world championships. However, these transversal analyses present some limitations because the performances do not belong to the same person and do not correspond to the same generation of athletes. Longitudinal studies would be more appropriated to describe the decline in performance with age but unfortunately, longitudinal studies are scarce in the literature (Trappe et al., 1996; Knechtle et al., 2010). Trappe et al. (1996) investigated runners between 46 and 68 years and found that aerobic capacity of highly trained middle-aged males declined by 5-7% per decade. Knechtle et al. (2010) reported that the running speeds of a 86 years master runner (winner of the European half-marathon Championship in the 85-89 age-group) gradually slowed since the age of 64, with a larger decline after 80 years.

In the present paper, we propose to analyze the age-related decline in endurance running performance of one of the greatest master runners ever, Ed Whitlock (EW), (1931-2017). EW recently died of prostate cancer one week after his 86th birthday. Before that, the Canadian master athlete was the first person over 70 years old to run a marathon in less than
three hours. At the age of 85, he was also the oldest person to run a marathon in less than four hours. The main aim of this study is to describe the age-related decline in running performance of EW. We more specifically focused on EW’s performance after 65 years old because he held his world records in age-groups from 65-69 years onwards.

Methods

Data were collected from the following websites: http://www.world-masters-athletics.org; https://www.mastersrankings.com and http://www.arrs.net.

To date, EW still held more than 30 age-class world records on road and track running. EW had a late-life career as a marathoner. He ran a 4:31 mile in high school then ran little in college because of an Achilles tendon injury, and quit running at age 21 yrs when he started to work. He resumed running at his 40's and became a world-class masters runner at 800 m and 1500 m. He did his first marathon at age 46 yrs and had his personal best on the marathon at age 48 (2h31min23s). After winning the World masters 1500 m title at age 48 yrs, he lost the incentive to train and again stopped running. After retiring, EW took up running again. EW said, “I realized in my late 60s that this silly objective of being the first person over 70 yrs to get under 3h in the marathon was just sitting there waiting for someone.” (http://www.runnersworld.com/ed-whitlock/masters-marathon-legend-ed-whitlock-dies-at-86).

The running performances were considered for the categories corresponding to a 5-year period as follows: 65-69 years, 70-74 years, 75-79 years, 80-84 years and 85-89 years. The following running distances were considered: 1500 m (indoor and outdoor), 3000 m (indoor and outdoor), 5000 m, 10 km, 21 km and the marathon (42 km). The age-related decline in performance was specifically examined for 1500 m (indoor and outdoor, pool data),
5000 m, 10 km and marathon (42 km), and was expressed as the age-related decline in running speed for these four distances.

Results

The most representative running performances of EW are shown in table 1. The mean decrease in running performance between each 5-year period from 65-69 years remained inferior to 5% until 75-79 years but was more pronounced after 80 years, reaching 13.4% between 80-84 years and 85-89 years. Figure 1 shows the age-related decrease in running performances during a 20-year period between 65 and 85 years. The running speed for the different events declined with advanced age but the decline was more pronounced after 80 years old.

Discussion

The running performances of EW after 65 years old are exceptional. One of the most impressive performances remains maybe his running time at the marathon set at the age of 73 yrs when he ran 2h54min48s. The performance corresponding to a running speed of 4.02 m.s\(^{-1}\) is only 30% lower than that of the actual absolute world record (5.72 m.s\(^{-1}\), 2h02min57s) and was considered, according to the model proposed by Vanderburgh (2015), as the fastest age-adjusted marathon world records of all time (age-adjusted time: 2h02min42s). It has also been estimated that the maximum oxygen uptake (VO\(_{2\text{max}}\)) of EW at 80 years of age was close to 50 mlO\(_2\).kg\(^{-1}\).min\(^{-1}\) (Lepers et al. 2013), that is much higher than the average VO\(_{2\text{max}}\) observed by Trappe et al (2013) in octogenarian endurance athletes (~38 mlO\(_2\).kg\(^{-1}\).min\(^{-1}\)).

Besides his exceptional performances during his last two decades of life, there was an
accelerated decline in his performances after 80 years. The mean decline from 1500 m to marathon reached 13% during the 5-year period between 80 and 85 years, whereas it was only around 5% under 80 years. Knechtle et al. (2010) reported similar observation for a well-trained master athlete, who presented an increased rate of decline in half-marathon performance at the age of 82 yrs. The reason for this accelerated decline in performances at the beginning of 80’s in master athletes are not clear. Potential age-related changes in physiological determinants of endurance exercise performance have been well described in literature (Lepers et al. 2016a, Tanaka and Seals, 2003). Reductions in VO$_{2\text{max}}$, lactate threshold and exercise economy are closely related to reductions in exercise training volume and intensity. The changes in the physical (e.g. prevalence of injuries) and behavioral (e.g. reduction in motivation to train) characteristics of training of the endurance master athletes with age can also be implicated. A possible fading of integrative physiological capacity after 80 years, though training levels remain appropriated for age, should require more attention by exercise physiologists.

We do have some information about EW’s training. In interviews (Video available at the address: https://www.youtube.com/watch?v=65dNE_BMTNc), EW said things like: “I don’t have a manager. I don’t have a coach. I don’t have a trainer. I don’t use heart monitors. I don’t take any supplements.” When at the height of marathon training, Whitlock did cemetery loops for 3 hours a day, every day; doing more than 140 miles per week. However, EW had a competitive spirit, He said: "Age-grading tables are a great motivator. My main interest in them is to see if I'm going downhill faster than the tables say or see if I can beat the tables." Even if, there is few scientific evidence on the way to train master athletes, especially elderly master athlete (Borges et al. 2016), EW would have probably had benefits to train with a coach for master athletes.
The presence of an accelerated decline in endurance performance after 80 years old needs to be confirmed by other longitudinal studies for other endurance activities such as swimming and cycling. Indeed, previous studies suggested that age-related decline in endurance performance depended on the locomotion mode, with a less pronounced decline in cycling compared with running or swimming (Bernard et al., 2010; Lepers et al., 2010; Lepers et al., 2016b, Lepers et al., 2017).

In conclusion, the running performances of EW from 1500 m to marathon from 65 to 85 years were exceptional. His performances showed a more pronounced drop after 80 years old. However as previously mentioned, EW died at 86 years old from prostate cancer and this could have had a significant impact on the EW's running performances during the last years of his life, especially after 85 years.

Conflict of interest

The authors report no conflicts of interest associated with this manuscript

References

<table>
<thead>
<tr>
<th>Age Group</th>
<th>1500 m Outdoor (min:s,)</th>
<th>1500 m Indoor (min:s,)</th>
<th>3000 m Outdoor (min:s,)</th>
<th>3000 m Indoor (min:s,)</th>
<th>5000 m (min:s,)</th>
<th>10 Km (h:min:s)</th>
<th>21 km (h:min:s)</th>
<th>Marathon (h:min:s)</th>
<th>Mean difference with previous age group</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-69 yrs</td>
<td>04:46,1</td>
<td></td>
<td>17:38,5</td>
<td></td>
<td>36:31,5</td>
<td>01:19:32</td>
<td>02:51:02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-74 yrs</td>
<td>05:07,9</td>
<td></td>
<td>10:52,4</td>
<td></td>
<td>18:33,4</td>
<td>01:22:23</td>
<td></td>
<td>02:54:48</td>
<td>4.7 ± 1.8 %</td>
</tr>
<tr>
<td>75-79 yrs</td>
<td>05:20,0</td>
<td>11:10,4</td>
<td>11:17,2</td>
<td>19:07,0</td>
<td>39:25,2</td>
<td>01:29:26</td>
<td></td>
<td>03:04:54</td>
<td>4.3 ± 1.9 %</td>
</tr>
<tr>
<td>80-84 yrs</td>
<td>05:48,5</td>
<td>12:13,6</td>
<td>12:08,9</td>
<td>20:58,1</td>
<td>42:39,9</td>
<td>01:37:38</td>
<td></td>
<td>03:15:54</td>
<td>8.1 ± 1.4 %</td>
</tr>
<tr>
<td>85-89 yrs</td>
<td>06:38,2</td>
<td>06:38,9</td>
<td>13:42,0</td>
<td>24:03,9</td>
<td>51:07,5</td>
<td></td>
<td></td>
<td>03:56:34</td>
<td>13.4 ± 2.9%</td>
</tr>
</tbody>
</table>

Table 1. Selection of representative running performances of Ed Whitlock. In bold: Current world records.
Figure captions

Figure 1

Ed Whitlock’s running speed as function of age for different events. The decline becomes more predominant after 80 years old.
Ed Whitlock’s running speed as function of age for different events. The decline becomes more predominant after 80 years old.