Recovery of Carbon Pools a Decade Following Wildfire in Black Spruce Forests of Interior Alaska: Effects of Soil Texture and Landscape Position

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Forest Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>cjfr-2017-0236.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>07-Oct-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Houle, Gregory; Michigan Technological University, School of Forest Resources and Environmental Science; US Forest Service, Northern Research Station Kane, Evan; Michigan Technological University, School of Forest Resources and Environmental Science; US Forest Service, Northern Research Station Kasischke, Eric; University of Maryland Gibson, Carolyn; University of Guelph, Department of Integrative Biology Turetsky, Merritt; University of Guelph</td>
</tr>
<tr>
<td>Keyword:</td>
<td>Picea mariana, parent material, clay, loess, wild fire</td>
</tr>
<tr>
<td>Is the invited manuscript for consideration in a Special Issue?:</td>
<td>N/A</td>
</tr>
</tbody>
</table>

https://mc06.manuscriptcentral.com/cjfr-pubs
Recovery of Carbon Pools a Decade Following Wildfire in Black Spruce Forests of Interior Alaska: Effects of Soil Texture and Landscape Position

Gregory P. Houle1,2
Evan S. Kane1,2*
Eric S. Kasischke3
Carolyn M. Gibson4
Merritt R. Turetsky4

1 School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI USA.
2 Northern Research Station, USDA Forest Service, Houghton, MI USA.
3 Department of Geography, University of Maryland, College Park, MD USA.
4 Department of Integrative Biology, University of Guelph, Guelph, ON CAN.
* Corresponding author
Abstract

We measured organic layer (OL) recovery and carbon stocks in dead woody debris a decade following wildfire in black spruce forests of interior Alaska. Previous study at these research plots has shown the strong role landscape position plays in governing the proportion of OL consumed during fire, and post-fire revegetation. Here, we show that landscape position likely influences fire dynamics in these stands through changes in mineral soil texture. The content of fine textured materials in underlying mineral soils was positively related to OL depths measured one and ten years post-fire, and there was an interaction between soil texture and elevation in governing OL consumption, and OL recovery a decade following fire. OL depths a decade post-fire were 2 cm greater than one year post-fire, with a range of 19 cm of accumulation to 9 cm of subsidence. Subsidence was inversely related to the percentage of fine textures within the parent material. The most influential factor determining the accumulation of organic layer carbon stocks a decade following wildfire was the interaction between landscape position and the presence of fine textured soil. As such, parent material texture interacted with biological processes to govern the recovery of soil organic layers.

Keywords: Picea mariana, parent material, clay, loess, wild fire
Introduction

Boreal forests currently harbor about a third of the Earth’s rapidly cycling soil organic carbon (C) (McGuire et al. 1995; Pan et al. 2013), which is a pool size similar in magnitude to that of all the C in the atmosphere (~800 Pg). Carbon has accumulated in boreal forest soils as the result of C inputs from net primary production slightly exceeding C losses from decomposition and disturbances (erosion, combustion during fire). This imbalance has been maintained through millennia owing to cold and wet conditions which slow decomposition processes and also contribute to these stores being relatively resilient to disturbances such as wildfire. In the North American boreal forest, black spruce (*Picea mariana* Mill. B.S.P.) cover types are associated with the largest soil organic carbon (SOC) stocks, and are also prone to fire (Johnson and Kern 2003). As part of the historic fire regime in this cover type, C losses through combustion recover with succession and regeneration; this pattern of disturbance and regeneration is assumed to follow a sawtooth pattern wherein rapid C losses in wildfire are followed by gradual accrual of SOC with stand replacement (Harden et al. 2000). However, this paradigm may be affected by a changing climate and fire regime in the North American boreal forest.

In recent decades, greater burned area and increasing fire sizes have occurred--particularly in continental regions of Alaska and western Canada (Kasischke and Turetsky 2006). The increased extent and severity of wildfire has implications for C storage in these ecosystems, with many black spruce forests losing more SOC in these large fire events than they have historically been able to accumulate between fire events (Turetsky et al. 2011). As such, it is important to investigate the controls on SOC accumulation following severe wildfires in boreal
black spruce forests to understand how wildfire may affect C storage capabilities of these ecosystems.

There is an emerging understanding of controls on organic matter consumption in wildfires in boreal black spruce forests (Johnstone et al. 2010; Kasischke et al. 2010; Kasischke and Hoy 2012), but few studies have directly investigated the variable controls on organic layer (OL) recovery and soil development over time following boreal wildfires (cf. Viereck and Dyrness 1979; Seedre et al. 2014; Kishchuk et al. 2015). Conceptually our understanding of the development of soils following disturbance, including SOC dynamics, comes from the ‘State Factor concept’ proposed by Dokuchaev (1879; Hambidge 1938) and Jenny (Amundson and Jenny 1997). State factors include the interacting effects of physiography, climate, time, biology, and parent material that influence soil development. In boreal forests, relief and aspect strongly control microclimate (Slaughter and Viereck 1986), with north-facing and toe slope forests generally being cooler, wetter, and more likely to be dominated by black spruce and contain permafrost than south facing or flat upland stands on hill crests. In turn, north-facing and flat lowland forests generally have less OL consumption in any fire event (Turetsky et al. 2011), as well as slower productivity and slower rates of decomposition during fire-free periods. As a result of all of these processes, OL depths and SOC stocks tend to be larger in cooler north-facing and toe slope forests on time scales appropriate for factoring disturbance effects on the C cycle (Van Cleve and Yarie 1986; Kane and Vogel 2009). Fires generally occur on 100 year intervals in interior Alaska (Yarie 1981), but when the fire return interval is shortened the “time” component of the state factor concept gets reset- potentially decreasing OL depth recovery and SOC accumulation since fire (Bond-Lamberty et al. 2007; Johnstone and Brown 2011; Harden et al. 2012; Hoy et al. 2016). It can therefore be seen how time interacts with other state factors
mainly related to site drainage in controlling the recovery of OL and SOC following wildfire.

While there is general consensus of state factor control on soil development in the broad sense, a key factor control on post-fire OL characteristics in boreal forests—parent material texture—has received far less consideration (Van Cleve et al. 1991; Johnson et al. 2011).

Loess deposits (clay and silt sized particles) are widespread parent materials throughout Alaska’s interior region which develop syngenetically from wind derived inputs from the major glacial river valleys, namely the Tanana, Yukon and Koyukuk (Péwé 1955; Begét et al. 2006). As such, the thickness and development of loess deposits generally decrease gradually with distance from alluvial sources (White et al. 2002; Mulligan 2005) and are thinner at higher elevations, particularly near treeline where there is less tall-statured vegetation to trap eolian deposits (Péwé and Reger 1983; Muhs et al. 2003; Begét et al. 2006). This discontinuous mantle of loess overlies residual, colluvial and glacially transported materials, which generally have lower water holding capacities due to being coarser textured and containing rock fragments (Ping et al. 2006, and references therein). Changes in loess depth and parent material characteristics also influence soil ice content and permafrost maintenance, which also greatly affect drainage (Swanson 1996; Brown et al. 2015). As such, much of the soil water holding capacity in interior Alaska is derived from variation in the thickness of the loess cap and what it is underlain with, both of which vary with physiography and origin (see for example, O’Donnell et al. 2013).

While it is well established that soil texture exerts strong control over soil moisture, stand production, and organic matter accumulation in boreal forest (e.g., Bhatti and Apps 2000), its interactions with landscape position in governing the severity of burning and the recovery of SOC stocks following fires have not been directly examined. Here, we investigate changes in OL consumption and recovery on different landscape positions in the additional context of the
underlying parent material. First, we examined the interaction between soil texture and landscape position in determining the depth of burn (one year post fire). Second, we looked at the role of soil texture in influencing recovery of the SOC pool during a ten year window of post-fire succession. We measured OL depths, bulk densities (BD), SOC stocks, and standing and down woody debris C pools prior to burning (live trees and undisturbed SOC stocks), one year after wildfires occurred in 2004, and ten years following wildfires in interior Alaska. We hypothesized there would be OL recovery over the 10 year window since fire, with new materials accumulated since fire having a higher C concentration and lower BD than the underlying OL remaining after a fire. On the other hand, there may be changes in the residual OL layer remaining after fire due to increased decomposition, site drainage and physical compaction, which in turn contribute to increases in BD, perhaps lower C concentration, and subsidence of the OL. Our objective was to determine the extent to which parent material texture, as a state factor control over site drainage, could explain variance additional to physiographic variables in OL consumption in wildfire as well as OL recovery, SOC accumulation and the relative distributions of post-fire C pools associated with woody debris.

Methods

Site Selection and Sampling

During the summer of 2004, interior Alaska experienced the hottest and driest weather since 1940 (Alaska Climate Research Centre 2009). These conditions resulted in widespread fires consuming 2.7×10^6 ha of forests, representing the largest annual burned area in Alaska’s 58-year fire record (Todd and Jewkes 2006). Most study sites were established the following spring (June to August, 2005), with some sites established in the summer of 2006, as described in detail by Turetsky et al. (2011). While the sites selected for this study burned during early
summer (June and early July) fires, they encompassed a range of fire severities (defined by consumption of aboveground biomass and organic layer) that were controlled by site moisture levels, topographic positions, parent material texture, and geographic dispersion across the landscape (Kasischke et al. 2008). Briefly, site establishment included placing a center wooden post monument (where GPS location was determined), in the middle of a 50 m baseline transect which bisected one 30 m transect at the center and two additional 30 m transects at random distances from center. Soil organic layer (OL) depths, soil bulk densities (BD), and samples for elemental analysis were taken as previously described in detail (Kane et al. 2007; Turetsky et al. 2011). Depth of burn was quantified by measuring the distance from the upper most adventitious root down to the top of the organic soil layer as previously described (Kasischke et al. 2008; Boby et al. 2010).

In this study 38 study sites encompassing four different landscape positions (flat (< 5% slope) lowland (n=8), flat upland (n=10), north aspect (n=12) and south aspect (n=8)) were revisited for sampling ten years post fire (Figure 1). The original wooden monument was located and transects were run as previously described. Organic layer depths were measured every five meters along the 50 m baseline and three 30 m transects. Organic layer soil cores were sampled from each site at 0 m, 15 m, and 30 m along the three 30 m transects (n=9). Core sampling occurred after biomass collection using a 5 cm diameter sharpened stainless steel soil corer attached to a power drill (cf. Nalder and Wein 1998). Cores were sampled in 20 cm increments, with the surface char layer parsed from the remaining core samples in the field. Incremental depths were noted and samples were refrigerated until lab analysis. In this study only organic layers were re-measured for changes in physical and chemical properties. We dug an additional
soil pit to a depth of 0.5 m into the underlying mineral soil for texture analysis of site parent material at each site.

Dead Woody Debris

Down dead woody debris (DDWD) was sampled using the Brown (1974) transect intercept method. Diameters of down dead black spruce were recorded at the intersection of the three 30 m transects and were measured using a hand caliper and classified by 5 different size classes; class I 0-0.5 cm, class II 0.5-1 cm, class III 1-3 cm, Class IV 3-5 cm, and Class V 5+ cm (Nalder et al. 1997). Five decay classes were also assigned with diameter measurements following Manies et al. (2005). Down dead black spruce biomass was quantified using the fuel load estimate equation by sample size classes, 1-5 (Nalder et al. 1997). Each designated decay class 1-5 was used in determining the biomass of woody tissues (Manies et al. 2005), which was assumed to be 50% carbon (Bond-Lamberty et al. 2004; Thomas and Martin 2012).

All standing dead black spruce within one meter of either side of the 30 m transects (180 sq. m) were tallied and their basal diameters were measured. Standing dead black spruce tree biomass was determined using allometric equations for bole, bark and coarse branches based on basal diameters (Yarie et al. 2007). All standing dead woody debris (SDWD) was assigned a decay class of one, and biomass was assumed to be 50% carbon (Thomas and Martin 2012).

Soil Core Processing

Field moist organic layer soil cores were weighed and cut in half vertically by 20 cm sections. One half was designated for soil bulk density (BD). BD was determined as the dry core mass (dried to constant mass at 65°C) divided by the incremental core volume. Dry BD core samples were ground in a Wiley mill for elemental analysis.
Mineral soil samples were prepared by drying in an oven at 65 °C, pulverized with a hammer, and sieved through a #10 (2 mm) mesh sieve to determine rock content. Particle size analysis for percentages of sand, silt and clay on the rock-free fraction followed the standard hydrometer method (Gee and Bauder 1985). Briefly, 100 g of mineral soil sample was dispersed with 50 ml of sodium hexametaphosphate. Hydrometer and solution temperature were recorded at 40 seconds and 8 hours after the initial mixing of the solution. A blank solution was made and hydrometer and temperature measurements were recorded during the same measurement intervals as the parent material solutions.

All soil samples from 16 sites (four from each landscape classification unit) were analyzed for elemental C and N content (Costech Elemental Combustion System 4010; Costech Analytical Technologies Inc., Valencia, CA, USA). Organic matter content based on loss on ignition (LOI) at 500º C for 12 hours in a muffle furnace was determined on soil samples from all 38 sites, and carbon content was determined from the empirical relationship between LOI and elemental analysis ($R^2 = 0.77$, $p < 0.001$, $F = 33.54$; $\beta_0 = 0.33 \pm 5.07$; $\beta_1 = 0.49 \pm 0.08$). A separate empirical relationship between LOI and elemental analysis was used to determine the C content of char layer soil samples ($R^2 = 0.73$, $p = 0.002$, $F = 21.14$; $\beta_0 = 2.60 \pm 8.25$; $\beta_1 = 0.48 \pm 0.11$).

Statistical Analyses

Effects of landscape position measurements (slope, aspect and elevation), soil texture, and their interactions on the percent change in OL depth, absolute change in OL depth, change in BD, and change in SOC stocks ten year after wildfires were investigated. We used a general linear mixed model approach which enables statistical models to be fit to data where the
response is not necessarily normally distributed (PROC GLIMMIX; SAS version 9.4, SAS institute, Cary, North Carolina USA). The distributions of the response variables were evaluated in Kolmogorov-Smirnov tests using the UNIVARIATE procedure. The appropriate data distributions satisfying assumptions of normality were assigned in the mixed effects models (with distribution (dist) assigned as normal, lognormal, exponential, or gamma as appropriate; link=log function). Type-3 tests of fixed effects and post-hoc comparisons of least-squared means tests across landscape positions were considered significant at alpha = 0.05. Least-squared mean value comparisons employed the Tukey–Kramer adjustment. SAS code and all organic layer LOI, carbon and BD data are available in the public domain (doi.pangaea.de/10.1594/PANGAEA.880718).

Results

Controls on Depth of Burn

Pre fire organic layer depths ranged from 16.6 to 43.8 cm and averaged (± standard error) 28.7 ± 0.2 cm. One year post fire organic layer depths ranged from 1.7 to 30.6 cm and averaged 12.0 ± 0.2 cm. For one year post-fire measurements, lowland OL depths were thicker than uplands by a factor of 2.1 and north facing slopes were thicker than south facing slopes by a factor of 1.7. Factors contributing to the relative change in OL depth (percent change in OL depth after burning) in the years following wildfire included mineral soil texture and its interaction with elevation (Table 1). While one year post-fire measurements of OL depths did vary significantly with landscape position (Figure 2), model results suggest that the change in OL depths is driven mainly by the presence of fine textured materials within the parent material (Table 1a).
Controls on Residual OL Depths

Organic layer depths varied with landscape position after both one year and ten years following wildfires (Figure 2). Across all plots, mean organic layer depths did not recover to pre-fire depths in ten years. Ten year OL depth measurements ranged from 5.2 to 41.0 cm and averaged 13.6 ± 0.2 cm. Ten year post-fire OL depths differed by a factor of 1.6 between lowlands and uplands and by a factor of 1.5 between north and south facing slopes, though variability on north facing slopes was high and differences were not significant between these two landscape positions (Figure 2). While the majority of the sites re-sampled ten years following wildfire exhibited thicker OL depths than those measured one year post-fire, 16 of 38 sites actually had shallower mean OL depths (Figure 3a). These declines in OL thickness are likely attributed to subsidence, which coincided with an increase in total OL BD across almost every site (Figure 3b). Across all sites, south facing and upland sites generally had greater increases in OL depths (0.30 ± 0.13 cm yr\(^{-1}\)) than did north facing and lowland sites (0.10 ± 0.11 cm yr\(^{-1}\)) over the last ten years. Relationships between ten year post-fire OL depths and elevation indicated that as site elevation increased, OL thickness following fire decreased (\(R^2=.31, P<.001\;\text{Table 2}\)).

Factors contributing to the measured change in OL depth over ten years included slope, mineral soil texture, and their interactions with elevation (Table 2a). There was increased accumulation of OL depth over the last ten years as the clay content of underlying mineral soils increased, and there was an interaction between slope and clay content in explaining variation in OL depths (Table 1b).

Controls on Post-Fire SOC Stocks
Factors contributing to changes in OL depth and soil C stocks were related to changes in physiographic variables and parent material texture, with slope and elevation playing a significant role in OL depths and aspect and texture playing a larger role with changes in C stocks (Table 2). In particular, the clay content of underlying mineral soil significantly affected the amount of change in OL depth between measurements taken one and ten years post fire, with an increase in finer textured parent material resulting in a greater accumulation of organic material in the first decade following fire (Figure 4). In fact, OL subsidence (negative change in OL depth over the last 10 years) occurred when the percentage of clay in the parent material was < 20% (Figure 4c). On average BD measurements were higher in year 10 than in year 1 across all plots by 0.04 ± 0.01 g cm$^{-3}$, which is consistent with increasing subsidence in the organic layers (Figure 3). BD measured ten years after fire and the change in BD measurements between one and ten years after fire were both lower in sites with a higher percentage of clay in the mineral soil (Figure 4a, b). However, BD values varied widely across all plots (mean coefficient of variation = 1.1), and there were no significant changes in BD with landscape position (Table 2b).

Because SOC stocks are the product of C concentration, BD, and depth considered, interpretation of changes in SOC stocks is best done in the context of changes in BD and OL depth. Most sites in this study accumulated OL SOC stocks in the first decade following fire, suggesting that either C concentration or change in BD were more significant than any effects of OL subsidence (decreasing thickness or depth) in determining changes in SOC stocks (Figure 3). In considering all physiographic variables together, only aspect had a significant main effect on changes in OL SOC stocks (Table 2c). However, since changes in OL depths occurred with texture and elevation, we examined these effects on changes in SOC stocks. Percent clay within
the parent material was not considered a significant main effect explaining changes in carbon stocks between 1 and 10 years post-fire, but there was a significant interaction between aspect and the clay percentage in explaining changes in SOC stocks (Table 2c). While the north-facing and lowland sites generally coincided with having higher mineral soil clay content, these sites accrued SOC more slowly \((0.07 \pm 0.05 \text{ kg C m}^{-2} \text{ yr}^{-1})\) than did flat upland and south-facing sites \((0.12 \pm 0.06 \text{ kg C m}^{-2} \text{ yr}^{-1})\) over the first ten years since fire.

Woody Debris and Char Layer Carbon Following Fire

OL consumption following fire (1 year post fire measurement) was the most significant predictor of the distribution of fire killed black spruce in either standing or downed woody debris pools. As the amount of OL consumed in fire increased, the relative amount of DDWD carbon measured a decade following fire increased (Figure 5). DDWD C pools were also affected by parent material clay content (Table 3), with there being generally less DDWD in sites with higher mineral soil clay content. There was also a weak interaction between clay content and aspect (Table 3), owing to the co-occurrence of higher clay but also lower DDWD in flat lowlands. Total DDWD C stocks increased marginally with increased elevation (Table 3). For the four categorical landscape positions the DDWD pool was larger in flat uplands \((0.38 \pm 0.08 \text{ kg C m}^{-2})\) than in flat lowlands \((0.11 \pm 0.09 \text{ kg C m}^{-2})\), but there were no other significant differences by aspect (Figure 6). Compared with pre-fire stand conditions, 39 ± 2 % of black spruce carbon was still in standing aboveground pools (SDWD) 10 years after fire, with a range of 0-49%. While there were no statistical differences in SDWD C pools across landscape positions \((p = 0.47)\), flat lowlands generally had more SDWD C \((0.60 \pm 0.12 \text{ kg C m}^{-2})\) than flat uplands \((0.55 \pm 0.11 \text{ kg C m}^{-2})\) and there was a marginal effect of elevation on these pools across all sites \((F = 3.55, p = 0.07)\).
In the wildfires included in this study, the amount of char produced per unit carbon consumed (char conversion rate) declined as the depth of the OL increased ($R^2 = 0.72$, $p < 0.002$), as indicated by year 1 post-fire measurements. One year after burning, north aspects had accumulated fewer products from burning in the presence of a char layer (0.20 ± 0.03 kg C m$^{-2}$) than had south facing aspects (0.30 ± 0.04 kg C m$^{-2}$), which is consistent with char conversion rates being higher on south facing slopes with shallower pre-fire OL depths. Ten years after wildfire, there were no significant differences in the pool sizes of the char-layer C across all aspects ($p = 0.29$), and what was operationally defined as the char layer in field sampling was larger than that measured in year one across all sites (0.45 ± 0.04 kg C m$^{-2}$). The C pool size of this surface char layer was approximately double that of the DDWD C pool, and comprised 5-30% of the mean OL SOC stock remaining across all landscape positions (Figure 6).

Discussion

Decadal change in SOC, BD, and OL

In this study, the largest factors influencing the accumulation of OL carbon stocks a decade following wildfire were landscape position and presence of fine textured materials in the parent material. As hypothesized, sites lacking fine textured soils (mainly underlain with colluvium) accumulated organic material more slowly in the decade following fire. While there is a developed literature describing changes in OL thickness and SOC stocks on different landscape positions in black spruce forests of interior Alaska (cf. Viereck et al. 1983; Van Cleve et al. 1983; Van Cleve and Yarie 1986; Kane and Vogel 2009; Ping et al. 2010), regional variation is large (Johnson et al. 2011; Turetsky et al. 2011). Prior research has illustrated the strong control of parent material texture on organic soil development along a catena from an alluvial floodplain in interior Alaska (Viereck et al. 1993), and this work suggests that
underlying changes in parent material texture can explain additional variation in the recovery of
SOC stocks following disturbances in uplands as well as lowlands. Previous work along the
Boreal Forest Transect Case Study has clearly demonstrated the strong control of parent material
clay content and its interaction with landscape position on aboveground biomass production and
SOC within the forest floor (Bhatti and Apps, 2000), but to our knowledge this is the first direct
assessment of how OL recovery following wildfire is influenced by parent material texture and
its interaction with physiography.

While landscape position played a strong role in governing the depth of burn across the
sites in this study (Figure 2; Kane et al. 2007; Turetsky et al. 2011), mineral soil texture and its
interactions with landscape position did a better job in explaining variation in the percent change
in OL in the year following wildfire and in the decade following wildfire (Table 1). The
influence of mineral soil texture was likely present at the time of burning in controlling depth of
burn as well as in the years following fire. An increase in mineral soil clay content increases site
water holding capacity, which has been shown to decrease fire severity (Bergeron et al. 2007; see
also Peng et al. 1998) while also increasing aboveground biomass in upland boreal forests
(Bhatti and Apps 2000; Banfield et al. 2002). These findings suggest that accurate appraisals of
fire severity effects on organic layer consumption and recovery in the years following wildfire
need to consider parent material texture in addition to landscape position.

Combined, aspect and parent material texture were the strongest predictors of OL carbon
recovery in the decade following wildfire (Table 2c). While this is due to increased OL recovery
with increased fineness of parent material texture as well as increases in BD, we highlight here
that changes in OL BD over the last decade were highly variable across sites and likely represent
the largest source of error in our SOC recovery estimates (Table 2b). Sources contributing to
variability in BD measurements likely change with landscape position and antecedent OL characteristics. For example, the colonization and growth of surface moss over the last decade following wildfire would likely result in decreasing BD whereas the subsidence of OL layers would increase BD measurements in year ten compared to those measured one year post fire. Shallow soils following wildfire are not as susceptible to subsidence as are deeper organic soils, especially when underlain with fine-textured mineral soil. South facing slopes had the greatest amount of OL consumption during fires, and therefore exhibited little subsidence or change in BD over 10 years (increased by 0.02 ± 0.02 g cm$^{-3}$) while flat uplands had much greater OL depths following wildfire, had greater change in BD over 10 years (increased by 0.07 ± 0.02 g cm$^{-3}$), and had the highest BD on average a decade following wildfire (0.16 ± 0.03 g cm$^{-3}$). The countervailing effects of increased relative OL recovery and low BD change on sites which did not have much organic matter remaining following fire vs. sites with deep OL remaining following fires, which are susceptible to subsidence in the post burn environment when underlain with relatively coarse-textured soils, highlight the importance of texture, aspect, and their interaction in determining SOC accumulation following fire (Table 2c).

The fact that some upland sites did not demonstrate statistical increases in SOC a decade after year 1 measurements suggests that inputs from primary production have been less than or equal to C outputs from decomposition. Prior work at these sites has shown that severe burning (defined by OL consumption) is likely to alter the successional trajectory of regenerating vegetation communities (Gibson et al. 2016). As depth of burn increased, the regeneration of Sphagnum mosses and Picea mariana declined, with no Sphagnum regeneration occurring at sites with > 65% OL consumption (Gibson et al. 2016). Sites with a greater percentage of fine textured mineral soil exhibited the lowest reduction in OL and are therefore most likely to self-
replace with a *Picea mariana* over story and associated vegetation/moss communities. This is an important consideration with respect to the C balance of early successional forests because not only do mosses often dominate C inputs to soil pools but they also produce biomass that decomposes more slowly than most woody tissues (Turetsky et al. 2010; Bona et al. 2013). The effects of these early successional changes on SOC may not be evident in ten years, but certainly have implications for long term ecosystem C accumulation.

Lower moss inputs in the decade following fire could have lessened SOC accumulation at more severely burned sites underlain with coarser textured mineral soil, but mean rates of SOC accrual across all sites in this study were at the high end of published values (Manies et al. 2016). Rates of soil C accumulation following disturbance are not linear, with rapid accumulation occurring in early succession, and attenuation occurring with stand maturation (Harden et al. 2000). Studies investigating SOC accumulation rates which focus on short temporal dynamics often over-estimate rates, which likely explain our relatively high estimates of SOC accumulation (Manies et al. 2016). We suggest that interpreting changes in the rates of SOC accumulation in this study are most appropriate in the relative sense, owing to the short time since stand replacing fire. As such, landscape positions which promote higher net primary production (south facing and upland sites) accumulated SOC more rapidly in the first decade following fire, particularly when underlain with finer textured parent material (aspect x clay interaction; Table 2c). This is in agreement with post-disturbance studies throughout the boreal region (cf. Thiffault et al. 2011), wherein most forest has experienced wildfire or harvest. In Canada (Bhatti and Apps 2000), Siberia (Siewert et al. 2015), and Fennoscandia (Callesen et al. 2003; Strand et al. 2016) an increase in OL SOC is generally observed in upland boreal forests underlain with finer textured soil.
The interaction between aspect and fine textured mineral soil in governing the severity of burning into the OL had a resulting effect on the fate of dead woody debris in either standing or down pools. This is perhaps not surprising because of the shallow lateral root system of black spruce (LeBarron 1945), rendering this species particularly vulnerable to uprooting when the canopy is more exposed (Ruel 1995; Angers et al. 2011) - this would be prevalent with severe burning at higher elevation sites underlain with drier soils lacking fine textures. In addition, increased depth of burn consumes and/or kills shallow roots, making residual SDWD more susceptible to windfall, and increasing DDWD pools following wildfire (Smirnova et al. 2008). Prior work has suggested large changes in the residence times of woody debris C in standing or down pools, with downed wood likely representing a significant component of the total OL C stock (Moroni et al. 2015). For example, Seedre et al. (2014) documented a redistribution of SDWD to the DDWD pool approximately eight years after wildfire. This input is likely to be more important in lowland forests with deeper antecedent OL depths and continuous proliferation of mosses (Hagemann et al. 2010; Jacobs et al. 2015), which may be more effective in protecting wood-derived C in the OL from burning in subsequent fire events. However, our study suggests that more time may be required for flat lowland SDWD to be incorporated in downed or soil C pools than SDWD in upland and sloped sites. Prior research along a boreal Canadian fire chronosequence has estimated that between 10% and 60% of OL C stocks were derived from woody biomass inputs, with the majority of this input occurring between 20-40 years post fire (Manies et al. 2005). Sensitivity analyses conducted by Manies et al. (2005) suggested that variation in woody debris inputs, in addition to variation in post-fire inputs from primary production and the products of burning (char) with changes in landscape position, could
account for large differences in deep-soil carbon. We suggest here that in addition to these variables, the underlying mineral soil texture exerts direct and indirect controls on the distribution of woody debris C. Knowledge of mineral soil composition in relation to landscape position should therefore improve estimates of SOC recovery following wildfire.

Field estimates of the heterogeneous residues from burning accumulated at the surface of the soil, or “soil char layer” are somewhat problematic from a C assessment perspective because ocular estimates cannot distinguish different types of char (Soucémarianadin et al. 2015a) and its vertical stratification changes in variable ways with time since disturbance as it is leached within and from the soil (Santin et al. 2016). That said, surface char material is distinct from live or unburned moss and can represent a significant portion of the post fire SOC stock (Harden et al. 2004). In this study, C within the operationally defined char pool comprised a significant amount of variation in SOC stocks across sites, was almost double the size of the DDWD C pool, and was generally larger than measurements obtained one year following fire. However, we caution here that char delineated in this way ten years after fire is likely not representative of the char layer measured in the year following fire, and an investigation of the fate and mobility of char in the decade following fire was not possible in this study. While we measured changes in SDWD relative to DDWD pools, it is hard to know how charred woody debris continued to contribute to SOC pools in the decade following fire. Earlier study across the AK study region had observed higher accumulation of burn residues in mineral soils from southerly aspects with more complete combustion of the OL than north-facing or toe-slope forests (Kane et al. 2007), and the products of burning have been shown to accumulate within the surface mineral soils of other boreal spruce forests (Soucémarianadin et al. 2015b). These prior investigations have shown little correlation between fire frequency and the accumulation of burn residues in mineral
soil—suggesting alternative mechanisms of fire derived C stabilization, or a susceptibility to
combustion of this pool in subsequent wildfires before it reaches the mineral soil (Kane et al.
2010). However there has been little attention to the complexation of fire-derived C with clay
textured mineral soil in boreal forests, which has been shown to exert strong control over SOC
stabilization in other forested ecosystems (Santos et al. 2012; Wang et al. 2016). The co-
occurrence of increased fine textures in mineral soils and deeper OL depths in flat lowland
landscape positions may be conducive to the stabilization of relatively more char C in deeper
soils (Knicker 2007). Systematic examination of the products of burning in deep soil profiles
with changes in landscape position (cf. Manies et al. 2005) and mineral soil texture would
certainly be helpful in explaining the large variation observed in the size of this significant C
pool a decade following fire.

Broader Implications for SOC Assessments

In recent geospatial analyses synthesizing hundreds of SOC profiles in Alaska, climatic
variables (temperature and soil moisture) explained the most variance in regional SOC stocks as
might be expected (Johnson et al. 2011; Mishra and Riley 2012). In these studies, soil moisture
was a significant predictor of SOC stocks—dependent of precipitation regime—highlighting the
important controls of topographic attributes and parent material on water holding capacity.
Mishra and Riley (2012) suggest that poor representation of these controls on “soil wetness”
could contribute to large uncertainty in predicted SOC stocks in response to future climate
change in Earth system modeling scenarios. The data presented here agree with this assessment
and suggest that incorporating an understanding of parent material texture, as provided in the
Family level of soil taxonomy, would constrain the variation in SOC stock estimates in
geospatial analyses of SOC changes in response to disturbances.
Conclusions

Parent material texture as a ‘state factor’ control over soil development was shown to be at least as important as landscape position in controlling SOC stock recovery in the decade following wildfire in interior Alaskan black spruce forests. Together, parent material and landscape position explained most of the variance in SOC changes over ten years since burning, with the largest contributions to variability in stock assessments likely being associated with changes in BD and char C pools across sites. The influence of mineral soil texture was likely present at the time of burning in controlling depth of burn as well as in the years following fire; this was evident in the significant effects of texture on the percent of OL consumed measured in the year following fire. Aspect and parent material texture also influenced the fate of dead woody debris in either standing or down pools in the decade following fire, largely through their controls on fire severity and OL consumed in fire. Collectively these findings demonstrate the importance of understanding the source of soils in designing studies to understand fire ecology in interior Alaska.

Acknowledgements

We thank Rosanne Broyd and Melissa Nelson (Bergstrom) for assistance with fieldwork. We acknowledge financial support from: a NSERC Discovery grant to MRT, a Michigan Tech University Research Excellence Fund Seed (REF-Seed) Grant to ESK, the Bonanza Creek Long-Term Ecological Research program (funded jointly by NSF Grant DEB-0620579, and USDA Forest Service Pacific Northwest Research Grant PNW01-JV11261952-231), NASA (grant NNG04GD25G), and in kind support from the US Forest Service, Northern Research Station.

References

Dokuchaev, V.V. 1879. Abridged historical account and critical examination of the principal soil classifications existing. Transactions of the Petersburg Society of Naturalists, 1: 64-67.

Table 1: Mixed effect models describing percent changes in organic layer depths from pre-fire to one (a) and ten (b) years post fire. Asterisks denote level of significance (* = p ≤ 0.05; ** = p < 0.01; Model n=38).

<table>
<thead>
<tr>
<th>Effect</th>
<th>(a) F Value</th>
<th>P</th>
<th>(b) F Value</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>1.16</td>
<td>0.291</td>
<td>30.88</td>
<td><.0001**</td>
</tr>
<tr>
<td>Elevation</td>
<td>1.93</td>
<td>0.1756</td>
<td>10.11</td>
<td>0.0036**</td>
</tr>
<tr>
<td>Percent Clay</td>
<td>10.98</td>
<td>0.0025**</td>
<td>50.28</td>
<td><.0001**</td>
</tr>
<tr>
<td>Aspect</td>
<td>0.77</td>
<td>0.3869</td>
<td>1.92</td>
<td>0.1764</td>
</tr>
<tr>
<td>Aspect*Clay</td>
<td>0.04</td>
<td>0.8403</td>
<td>2.66</td>
<td>0.1139</td>
</tr>
<tr>
<td>Slope*Clay</td>
<td>2.50</td>
<td>0.1251</td>
<td>7.49</td>
<td>0.0107**</td>
</tr>
<tr>
<td>Elevation*Clay</td>
<td>6.29</td>
<td>0.0182**</td>
<td>20.63</td>
<td><.0001**</td>
</tr>
<tr>
<td>Slope*Elevation</td>
<td>1.37</td>
<td>0.2522</td>
<td>21.68</td>
<td><.0001**</td>
</tr>
<tr>
<td>SlopeElevationClay</td>
<td>2.15</td>
<td>0.1534</td>
<td>6.59</td>
<td>0.0159*</td>
</tr>
</tbody>
</table>
Table 2: Mixed effect models describing changes in organic layer depths (a), bulk densities (b), and carbon stocks (c) from one year post fire to ten years post fire. Model n=38 for organic layers and n=20 for bulk density and C stocks. Asterisks denote level of significance (* = p ≤ 0.05; ** = p < 0.01).

<table>
<thead>
<tr>
<th>Effect</th>
<th>(a) Change in Organic Layer Depth</th>
<th>(b) Change in Organic Layer Bulk Density</th>
<th>(c) Change in Organic Layer C Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F Value</td>
<td>P</td>
<td>F Value</td>
</tr>
<tr>
<td>Slope</td>
<td>11.27</td>
<td>0.0023**</td>
<td>1.19</td>
</tr>
<tr>
<td>Elevation</td>
<td>1.40</td>
<td>0.2466</td>
<td>2.39</td>
</tr>
<tr>
<td>Percent Clay</td>
<td>10.07</td>
<td>0.0036**</td>
<td>0.00</td>
</tr>
<tr>
<td>Aspect</td>
<td>1.48</td>
<td>0.2333</td>
<td>0.03</td>
</tr>
<tr>
<td>Aspect*Clay</td>
<td>0.09</td>
<td>0.7647</td>
<td>1.96</td>
</tr>
<tr>
<td>Slope*Clay</td>
<td>1.81</td>
<td>0.1894</td>
<td>0.07</td>
</tr>
<tr>
<td>Elevation*Clay</td>
<td>4.42</td>
<td>0.0447*</td>
<td>0.00</td>
</tr>
<tr>
<td>Slope*Elevation</td>
<td>8.07</td>
<td>0.0083**</td>
<td>2.93</td>
</tr>
<tr>
<td>SlopeElevationClay</td>
<td>1.65</td>
<td>0.2091</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table 3: Mixed effects model describing changes in the pool size of organic carbon in dead down woody debris ten years post-fire. Asterisks denote level of significance (* = p ≤ 0.05; ** = p < 0.01).

<table>
<thead>
<tr>
<th>Effect</th>
<th>DF</th>
<th>F Value</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>28</td>
<td>0.52</td>
<td>0.4771</td>
</tr>
<tr>
<td>Elevation</td>
<td>28</td>
<td>3.74</td>
<td>0.0633</td>
</tr>
<tr>
<td>Percent Clay</td>
<td>28</td>
<td>9.40</td>
<td>0.0048 **</td>
</tr>
<tr>
<td>Aspect</td>
<td>28</td>
<td>1.27</td>
<td>0.2698</td>
</tr>
<tr>
<td>Aspect*Clay</td>
<td>28</td>
<td>3.87</td>
<td>0.0592 *</td>
</tr>
<tr>
<td>Slope*Clay</td>
<td>28</td>
<td>0.28</td>
<td>0.5994</td>
</tr>
<tr>
<td>Elevation*Clay</td>
<td>28</td>
<td>1.97</td>
<td>0.1711</td>
</tr>
<tr>
<td>Slope*Elevation</td>
<td>28</td>
<td>0.48</td>
<td>0.4959</td>
</tr>
<tr>
<td>SlopeElevationClay</td>
<td>28</td>
<td>0.02</td>
<td>0.8843</td>
</tr>
</tbody>
</table>
Figure 1: Map of 38 sites burned in 2003 and 2004 revisited for measurements in 2014. Inset depicts study region within the interior region of Alaska, USA.
Figure 2: Mean organic layer depths before wildfires (adventitious root method) and one and ten years after wildfires (direct measurements) on different landscape positions. Different letters denote significant differences across landscape positions (post-hoc comparisons of means by landscape position).
Figure 3: Comparisons of post-fire organic layer depths (a), organic layer bulk densities (b) and soil organic carbon stocks (c) one year following wildfire (x axes) vs. ten years following wildfire (y axes). The dashed line in each plot is $y=x$.
Figure 4: Organic layer physical properties are regressed against mineral soil clay content. Mean bulk density for the whole organic layer measured ten years after wildfire (a) and the change in organic layer bulk densities from one to ten years following wildfire (b) both declined with increasing mineral soil clay content. The change in organic layer depths from one to ten years following wildfire increased with mineral soil clay content (c). Coefficients describing the regression lines (± standard error) are: (a) $\beta_0 = 0.174 \pm 0.013; \beta_1 = -0.0017 \pm 0.0005$ (b) $\beta_0 = 0.080 \pm 0.013; \beta_1 = -0.0013 \pm 0.0005$, and (c) $\beta_0 = -0.150 \pm 1.443; \beta_1 = 0.125 \pm 0.051$.
Figure 5: The proportional amount of down dead woody debris ten years following wildfire increased as the severity of burning within the organic layer increased across all sites. Coefficients describing the regression line are: $\beta_0 = -8.85 \pm 10.55; \beta_1 = 0.40 \pm 0.17$.

$R^2 = 0.14$

$p = 0.03$
Figure 6: Changes in the distributions of organic carbon pools across four landscape positions a decade following wildfire. Different letters denote significant differences in pool sizes across landscape positions (no significant differences across char or standing dead WD pools). Error bars represent standard errors of pool sums for a given landscape class.