Female offspring born to obese and insulin resistant dams are not at increased risk for obesity and metabolic dysfunction during early development

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Physiology and Pharmacology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>cjpp-2017-0371.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Brief Report</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>01-Aug-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Aburasayn, Hanin; University of Alberta, Pharmacy and pharmaceutical science</td>
</tr>
<tr>
<td></td>
<td>Al Batran, Rami; University of Alberta</td>
</tr>
<tr>
<td></td>
<td>Gopal, Keshav; University of Alberta</td>
</tr>
<tr>
<td></td>
<td>Almutairi, Malak; University of Alberta</td>
</tr>
<tr>
<td></td>
<td>Eshreif, Amina; University of Alberta</td>
</tr>
<tr>
<td></td>
<td>Eaton, Farah; University of Alberta</td>
</tr>
<tr>
<td></td>
<td>Ussher, John; University of Alberta</td>
</tr>
</tbody>
</table>

Is the invited manuscript for consideration in a Special Issue?: N/A

Keyword: obesity, pregnancy, glucose homeostasis, offspring, energy metabolism
Female offspring born to obese and insulin resistant dams are not at increased risk for obesity and metabolic dysfunction during early development

Hanin Aburasayn1,2,3, Rami Al Batran1,2,3, Keshav Gopal1,2,3, Malak Almutairi1,2,3, Amina Eshreif1,2,3, Farah Eaton1,2,3, and John R. Ussher1,2,3†

1Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB Canada

2Alberta Diabetes Institute, University of Alberta, Edmonton, AB Canada

3Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB Canada

†Address for correspondence:

Dr. John R. Ussher, 2-020C Katz Centre for Pharmacy and Health Research University of Alberta Edmonton, AB T6G 2E1 Canada
tel: 1-780-492-9337 fax: 1-780-492-3175 email: jussher@ualberta.ca

Running Title: Obese dams and metabolic health of female offspring

Word Count: 2,986

Figures: 4
Abstract:
The percentage of women who are obese at the time of conception/pregnancy is increasing, with animal and human studies demonstrating that offspring born to obese dams/mothers are at increased risk for obesity and the metabolic syndrome. Our goal was to confirm in an experimental model of metabolic syndrome in the dam, whether the offspring would be at increased risk of obesity. Conversely, we observed that male offspring born to dams with metabolic syndrome had no alterations in their body weight profiles, whereas female offspring born to dams with metabolic syndrome were heavier at weaning, but exhibited no perturbations in energy metabolism. Moreover, they gained weight at a reduced rate versus female offspring born to healthy dams, and thus weighed less at study completion. Hence, our findings suggest that factors other than increased adiposity/insulin resistance during pregnancy are responsible for the increased risk of obesity in children born to obese mothers.

Key Words: Obesity, pregnancy, high fat diet, offspring, glucose homeostasis, metabolic syndrome
Introduction

Currently in Canada there are over 2 million children who are overweight/obese, and the majority of these children will grow up to become adults who are also obese and at increased risk for developing metabolic syndrome (Morrison et al. 2007). Of interest, the concept of “developmental programming” suggests that an individual’s risk for developing disease throughout life is intricately connected to the environment of the womb that individual was exposed to (Blackmore and Ozanne 2013). This idea was first put forward by David Barker and colleagues and termed the “fetal origins hypothesis” to explain the inverse relationship between birth weight and mortality resulting from ischemic heart disease (Barker et al. 1989). Over the years the “fetal origins hypothesis” has continued to evolve, with a more recent evolution of this initial concept termed the “Developmental Origins of Health and Disease (DOHaD)”. The DOHaD hypothesis postulates that the risk for disease susceptibility in a developing individual is not simply confined to prenatal and early postnatal development, but is actually influenced by a more broader developmental window that includes the period from pre-conception to fertilization of the oocyte (Blackmore and Ozanne 2013; Pereira et al. 2015).

With regards to childhood obesity, as there are now an increasing percentage of pregnancies in overweight/obese women at conception (Flegal et al. 2012), the DOHaD hypothesis would suggest that this may be a significant factor accounting for the increased rates of obesity in our pediatric population (Catalano 2003; Shankar et al. 2008). Indeed, a number of studies have demonstrated that offspring born to obese dams are at increased risk for obesity and obesity-related metabolic dysfunction, with many studies implicating a key role for epigenetic alterations in mediating this phenomenon (Borengasser et al. 2013; Laker et al. 2014). For example, Howie and colleagues demonstrated that offspring born to dams supplemented with a high-fat diet (HFD) prior to and during pregnancy/lactation are more susceptible to obesity, regardless if they are weaned onto a low-fat diet (LFD) or HFD (Howie et al. 2009). Moreover, it has been demonstrated that C57BL/6J mice fed a HFD prior to and during pregnancy/lactation produce offspring at increased risk of glucose intolerance,
which was associated with reduced peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) mRNA expression as a result of increased PGC1α gene methylation (Laker et al. 2014). Nevertheless, there is inconsistency among studies exploring maternal obesity’s actions on offspring development, as some studies have observed no impact of maternal obesity on offspring body weight (Buckley et al. 2005; Holemans et al. 2004).

Therefore, our objective was to develop an animal model of obesity and related metabolic dysfunction in the pregnant dam to study whether the DOHaD hypothesis would be relevant to and impact the developing offspring. If this proved to be correct, our secondary objective was to assess whether such findings may be due to altered expression of critical genes regulating energy metabolism.

Methods

Animal Care

All animals received care according to the Canadian Council on Animal Care and the University of Alberta Health Sciences Animal Welfare Committee. 8-week-old C57BL/6J (Jackson Laboratory) females were either fed a low-fat diet (LFD, 10% kcal from lard, Research Diets D12450J) or high-fat diet (HFD, 60% kcal from lard, Research Diets D12492) for 5 weeks. After 5 weeks of LFD/HFD supplementation, females were mated to a 12-week-old male C57BL/6J mouse supplemented with a LFD. Upon confirmation of a vaginal plug, the male breeder was removed and female dams remained on their respective diet throughout gestation. Following birth, pups born to the dam supplemented with a LFD remained with the dam throughout the 21-day nursing/lactation period, whereas offspring born to the dam supplemented with a HFD were cross-fostered to a surrogate dam supplemented with a LFD. This was carried out to ensure that potential body weight differences would not be due to offspring being nursed by an insulin resistant dam receiving their nutrition primarily from a HFD. A total of 4 dams were used for each experimental group (4 surrogate dams to foster pups from the 4 dams supplemented with a HFD, and 4 dams supplemented with a LFD). For each individual breeding, it
was ensured that litter sizes between the surrogate dam and the LFD dam were identical at 3 days post-birth, with a maximum litter size of 5. Hence, if one dam was nursing 5 pups at 3 days post-birth and another dam was nursing 4 pups, 1 pup was randomly euthanized from the dam nursing 5 pups, such that both dams nursed an identical number of pups (4 pups) from 3 days post-birth until weaning. At 21-days of age all offspring were weaned into separate cages and supplemented with a LFD until euthanization at 14-weeks of age.

Magnetic Resonance Imaging (MRI) Body Composition Analysis

All female dams and offspring underwent assessment of body composition via quantitative nuclear magnetic resonance relaxometry to quantify total lean/fat mass utilizing an EchoMRI-4in1/700 body composition analyzer.

Glycemic Assessments

We assessed glucose homeostasis in female offspring as previously described (Ussher et al. 2014). In brief, oral and intraperitoneal glucose tolerance were assessed either in female dams fed a LFD or HFD for 5-weeks, or in female offspring following an overnight fast at 10- and 11-weeks of age, respectively, using a glucose dose of 2 g/kg body weight. Intraperitoneal insulin tolerance was assessed either in female dams fed a LFD or HFD for 5-weeks, or in female offspring following a 6 hr fast at 12-weeks of age, using an insulin dose of 0.3 U/kg body weight (Novolin (biosynthetic human insulin), Novo Nordisk).

Indirect Calorimetry

In vivo metabolic assessment via indirect calorimetry was performed in female offspring at 8-weeks of age using an Oxymax comprehensive lab animal monitoring system (Columbus Instruments) as previously described (Ussher et al. 2016).
Statistical Analysis

All values are presented as means ± standard error of the mean (SEM). Significant differences were determined by the use of an unpaired, two-tailed Student’s *t*-test, or a two-way analysis of variance (ANOVA) followed by a Bonferroni post-hoc analysis.

Results

5-weeks of high fat feeding leads to a marked increase in adiposity and impairs glucose homeostasis in female dams.

8-week-old female C57BL/6J mice were fed either a LFD or HFD for 5 weeks prior to conception with a lean 12-week-old male C57BL/6J mice fed a LFD. 5-weeks of HFD supplementation lead to significant increases in body weight in female mice, and this was associated with a significant increase in total fat mass and percent body fat (Figure 1A-C). This increase in adiposity was associated with impaired glucose homeostasis in female mice fed the HFD, as they exhibited both worse glucose and insulin tolerance versus their female counterparts fed a LFD (Figure 1D/E).

Female offspring born to dams supplemented with a HFD are heavier at weaning but exhibit reductions in weight gain throughout early development.

Male offspring born to dams fed a HFD for 5 weeks prior to conception had similar body weights to their counterparts born to dams fed a LFD, while also gaining weight at a similar rate (Figure 2). Conversely, female offspring born to dams fed a HFD for 5 weeks prior to conception were significantly heavier at weaning than their counterparts born to dams fed a LFD (Figure 3A). This difference in body weight quickly dissipated by 6- to 8-weeks of age, as female offspring born to dams fed a LFD gained body weight at an accelerated pace (Figure 3B). At study completion when the female offspring were 14-weeks of age, those born to a dam fed a HFD actually weighed less than those born to a dam fed a LFD (Figure 3A). These differences in body weight at weaning and at study
completion in female offspring were not associated with changes in total fat mass and percent body fat (Figure 3C-E).

Glucose homeostasis and in vivo energy metabolism are normal in female offspring born to dams supplemented with a HFD.

Because the male offspring demonstrated similar body weight curves throughout their early development (Figure 2), we focused the rest of our studies on the female offspring. When all female offspring were 10- and 11-weeks of age, they underwent oral and intraperitoneal glucose tolerance tests, respectively, and we observed no differences in glucose tolerance between both groups of offspring (Figure 4A/B). In addition, the female offspring born to dams fed a HFD exhibited no abnormalities in insulin sensitivity at 12-weeks of age in response to an insulin tolerance test (Figure 4C). During assessment of indirect calorimetry, we observed no differences in whole body oxygen consumption rates normalized to lean body mass in female offspring born to dams fed a HFD (Figure 4D), while substrate preference also appeared similar as respiratory exchange ratios were comparable between groups (Figure 4E). The reduced body weight gain in female offspring born to dams fed a HFD is not due to changes in animal ambulatory activity (Figure 4F), but may involve changes in appetite, as 24-hr food intake demonstrated a trend to a mild reduction (Figure 4G).

Discussion

In this study we observed that female dams fed a HFD for 5 weeks prior to conception and during pregnancy, produced female offspring that exhibited no adverse alterations in glucose homeostasis throughout their juvenile and young adult development. In support of the DOHaD ideology, these female offspring were heavier at weaning, but unexpectedly gained less weight than their counterparts born to dams fed a LFD.

The principle concepts of DOHaD suggest that the risk for disease susceptibility in a developing individual is actually influenced by a more broader developmental window that includes the period...
from pre-conception to oocyte fertilization, versus just the periods of prenatal and postnatal
development (Blackmore and Ozanne 2013). As such, we hypothesized that dams fed a HFD prior to
conception would produce offspring at increased risk for metabolic syndrome and early onset obesity.
To our surprise, female offspring born to dams fed a HFD exhibited no abnormalities in glucose
homeostasis. We initially surmised that reasons for this unexpected finding could be due to our
experimental model of HFD supplementation in the dam not inducing any overt metabolic dysfunction
or adiposity, but assessment of total adiposity in our dams fed a HFD prior to conception revealed
robust increases in total fat mass, as well as significant impairments in glucose and insulin tolerance.

Taken together, it remains unclear why we did not observe changes in glucose homeostasis in
our offspring born to dams fed a HFD prior to conception, and our findings are in contrast to previous
studies indicating that offspring born to obese dams are at increased risk for both elevated weight gain
and metabolic dysfunction. A study by Howie and colleagues demonstrated that both male and female
rat offspring gained weight at increased rates regardless if they were supplemented with a standard
chow diet or HFD at weaning if born to dams either fed a HFD (45% kcal from lard, Research Diets)
throughout life, pregnancy, and lactation, or only throughout lactation and pregnancy (Howie et al.
2009). Conversely, studies from Laker and colleagues utilizing a pregnancy model in which female
C57BL/6 dams were fed a HFD (60% kcal from lard, Research Diets) for 6 weeks prior to conception
and during gestation, demonstrated no differences in offspring body weight over a 1-year period
versus offspring born to dams fed a standard chow diet (Laker et al. 2014). Nevertheless, 9-month old
offspring born to dams fed a HFD exhibited impairments in glucose and insulin tolerance versus
offspring born to dams fed a LFD (Laker et al. 2014). The impairment in glucose homeostasis in the
offspring born to dams fed a HFD was attributed to epigenetic changes in PGC1\(\alpha\), a key regulator of
mitochondrial function, as PGC1\(\alpha\) methylation was increased and subsequent PGC1\(\alpha\) mRNA
expression decreased in skeletal muscles of these offspring. However, our measurements of soleus
PGC1\(\alpha\) mRNA expression indicate similar levels at weaning in our female offspring born to dams fed a
HFD, and in 14-week-old female offspring born to dams fed a HFD, versus their female counterpart offspring born to dams fed a LFD (Figure 4H), which may explain why glucose homeostasis was unaltered in our studies. Conversely, it is possible that if we allowed our female offspring to age to 9-months, we may have also observed impaired glucose homeostasis in the offspring born to dams fed a HFD, supporting previous findings (Laker et al. 2014).

Of importance, a number of studies support the notion that epigenetic inheritance may be a critical feature of the DOHaD ideology and the risk for disease susceptibility in a developing individual, including pediatric obesity and metabolic syndrome. For example, dams made obese via liquid enriched diet supplementation (40% excess calories) for 3 weeks led to robust alterations in offspring DNA methylation of pro-adipogenic factors (e.g. CCAAT enhancer binding protein β) in white adipose tissue stromal vascular cells (Borengasser et al. 2013). To ensure any potential epigenetic alterations in this study were likely acquired via inheritance from the dam fed a HFD and exposure to an obesity-like intrauterine environment, all offspring born to the dam fed a HFD were cross-fostered to a surrogate lean dam. Conversely, the pregnancy models used by Howie and colleagues or Laker and colleagues had the dams remain on a HFD during the nursing/lactation period. This differentiating factor could influence epigenetic mechanisms controlling body weight gain in the offspring during nursing, potentially explaining the early onset obesity in offspring weaned to a LFD and born to dams fed a HFD observed by Howie and colleagues (Howie et al. 2009), or the impaired glucose tolerance in offspring born to dams fed a HFD observed by Laker and colleagues (Laker et al. 2014). Hence, this may explain why we did not see an increased risk for early onset obesity or metabolic syndrome in our offspring born to dams fed a HFD for 5 weeks prior to conception, as we also cross-fostered our pups to a surrogate dam fed a LFD immediately upon birth. Alternatively, our findings do have a significant limitation in that we did not foster pups born to dams fed a LFD, and it is possible that our observations in female offspring are the result of the stress of fostering, and not the offspring being conceived by a dam fed a HFD and the subsequent intrauterine exposure to an obese metabolic environment. Furthermore, it is possible that maternal care from a foster mother is not as strong as
that from the genetic mother, which could also contribute to our observations in the female offspring. However, we would thus expect to have seen a similar body weight pattern in our male offspring, but body weights in male offspring born to dams fed a HFD and fostered to a dam fed a LFD were identical at all time points when compared to male offspring born to dams fed a LFD without fostering. Nonetheless, this remains a very important lingering question that we plan to address in our future studies.

In spite of this limitation, our results are unique as our female offspring born to dams fed a HFD were actually heavier at weaning than their counterparts born to dams fed a LFD, but gained weight at a reduced pace that they actually weighed less once they reached 14-weeks of age. On the other hand, male offspring born to HFD supplemented dams in our study had normal body weights at weaning and gained weight at similar rates to their male offspring counterparts born to LFD supplemented dams. It remains unclear as to why we observed this unique sex-dependent body weight profile in our offspring versus those observed in previously aforementioned studies, though our results in male offspring are consistent with findings in male rat offspring born to HFD supplemented dams by Buckley and colleagues (Buckley et al. 2005). Of interest, our findings are consistent with the set-point theory of body weight regulation (Farias et al. 2011), and it is possible that the reduced rate of body weight gain in female offspring born to a dam supplemented with a HFD could be a centrally regulated defense mechanism resulting from an elevated weaning body weight and intrauterine exposure to an obese environment. As such, it would be interesting to have continually monitored glucose homeostasis in our offspring as they aged even further, and whether this could be negated by weaning the female offspring onto a HFD, though that is beyond the scope of this specific study. It is worth noting though if this set-point theory of body weight regulation is correct, it would have also been anticipated to occur in the male offspring, which we did not observe in our study.

Another potential factor is that we utilized a sucrose-matched low-fat control diet for our control dams, whereas most studies simply utilize standard rodent chow. One of the most common standard chow diets employed in animal facilities is the 2018S diet of Teklad, and the micronutrient
compositions of these standard chow diets can be vastly different from the micronutrient composition of the Research Diets LFD/HFD utilized in our study. As such, we have observed differences with regards to glucose tolerance and insulin tolerance when comparing 2018S versus Research Diets LFD (unpublished data). This leads to the question of whether obesity itself, or the macronutrient composition of the HFD, is responsible for the offspring phenotypes observed in previous studies, or is it potential differences in micronutrient composition between the Research Diets HFD and the standard chow diet the dam is exposed to that is contributing to the offspring phenotype.

In summary, our findings did not reproduce those of previously published papers supporting the DOHaD ideology that obesity and metabolic dysfunction in the pregnant dam lead to increased risk for early onset obesity and metabolic dysfunction in the developing offspring. Whether this is due to differences in micronutrient composition in the diets we utilized versus previous studies, or because we cross-fostered our pups during nursing/lactation to a lean dam fed a LFD, remains to be determined. Future studies characterizing molecular factors that lead to increased body weight at weaning, but reduce the rate of body weight gain in female offspring born to dams fed a HFD are critical.

Acknowledgements
This study was supported by an Innovation Grant from the Women and Children’s Health Research Institute, and a New Investigator Operating Grant from the Molly Towell Perinatal Research Foundation. Hanin Aburasayn is supported by a Scholarship from the Saudi Arabian Ministry of Higher Education.

Disclosures
The authors have no conflicts to disclose.
References

Figure Legends:

Figure 1. 5-Weeks of HFD Supplementation Increases Adiposity and Precipitates Metabolic Dysfunction in Female C57BL/6J Mice. **A:** Body weights in female C57BL/6J mice fed a LFD or HFD for 5 weeks (n = 6). **B:** Total fat mass in female C57BL/6J mice fed a LFD or HFD for 5 weeks (n = 6). **C:** Fat mass as a percentage of total body weight in female C57BL/6J mice fed a LFD or HFD for 5 weeks (n = 6). **D:** Glucose tolerance in female C57BL/6J mice fed a LFD or HFD for 5 weeks (n = 6). **E:** Insulin tolerance in female C57BL/6J mice fed a LFD or HFD for 5 weeks (n = 4). Values represent mean ± SEM. Differences were determined by the use of an unpaired, two-tailed Student’s *t*-test, or a two-way ANOVA, followed by a Bonferroni post-hoc analysis. *P < 0.05.

Figure 2. Body Weights in Male Offspring. Body weights from weaning until 14-weeks of age in male offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 3, 4).

Figure 3. Body Weights and Adiposity in Female Offspring. **A:** Body weights from weaning until 14-weeks of age in female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 6). **B:** Total body weight gain over an 11-week period in female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 6). **C:** Total fat mass and % fat mass in 4-week old female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 6). **D:** Total fat mass and % fat mass in 8-week old female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 6). **E:** Total fat mass and % fat mass in 14-week old female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 6). Values represent mean ± SEM. Differences were determined by the use of an unpaired, two-tailed Student’s *t*-test, or a two-way ANOVA, followed by a Bonferroni post-hoc analysis. *P < 0.05.
Figure 4. Glucose Homeostasis and In Vivo Metabolism in Female Offspring. **A:** Oral glucose tolerance in 10-week-old female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 5). **B:** Intraperitoneal glucose tolerance in 11-week-old female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 5, 6). **C:** Intraperitoneal insulin tolerance in 12-week-old female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 5, 6). **D:** Oxygen consumption in 8-week-old female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 3). **E:** Respiratory exchange ratio in 8-week-old female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 3). **F:** Ambulatory activity in 8-week-old female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 3). **G:** 24-hr food intake in 8-week-old female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 3). **H:** Ppargc1a mRNA expression in gastrocnemius muscles from 3-week-old or 14-week-old female offspring born to C57BL/6J dams fed a LFD or HFD for 5 weeks (n = 3, 4). Values represent mean ± SEM. Differences were determined by the use of an unpaired, two-tailed Student’s t-test, or a one-way ANOVA, followed by a Bonferroni post-hoc analysis. *P < 0.05.
Figure 1

A

Body Weight (g)

Pre-Diet

5 Weeks Post-Diet

B

Total Fat Mass (g)

C

% Fat Mass

D

Glucose Tolerance

E

Insulin Tolerance

Blood Glucose (mM)

% Change in Blood Glucose

Time (min)

Time (min)
Figure 2

Male Offspring Born to a LFD Dam
Male Offspring Born to a HFD Dam

Body Weight (g)

Age (weeks)

https://mc06.manuscriptcentral.com/cjpp-pubs
Figure 3

(A) Body Weight (g) vs. Age (weeks)

(B) Weight Gain (g) vs. Age (weeks)

(C) Total Fat Mass (g) and % Fat Mass at 4-weeks of Age

(D) Total Fat Mass (g) and % Fat Mass at 8-weeks of Age

(E) Total Fat Mass (g) and % Fat Mass at 14-weeks of Age

Legend:
- Female Offspring Born to a LFD Dam
- Female Offspring Born to a HFD Dam

https://mc06.manuscriptcentral.com/cjpp-pubs
Figure 4

Oral Glucose Tolerance

IP Glucose Tolerance

Insulin Tolerance

O₂ Consumption

Substrate Preference

24 Hr Ambulatory Activity

24 Hr Food Intake

Gastrocnemius Ppargc1a

Relative mRNA Expression (normalized to Ppia)

3-Wk Old Females

14-Wk Old Females