Small-Band-Offset Perovskite Shells Increase Auger Lifetime in Quantum Dot Solids

Rafael Quintero-Bermudez, Randy P. Sabatini, Marc Lejay, Oleksandr Voznyy, Edward H. Sargent

Version Post-print/accepted manuscript

Publisher’s Statement This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acsnano.7b06363

How to cite TSpace items

Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the author manuscript from TSpace because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page.

This article was made openly accessible by U of T Faculty. Please tell us how this access benefits you. Your story matters.
Small-Band-Offset Perovskite Shells Increase Auger Lifetime in Quantum Dot Solids

Rafael Quintero-Bermudez, Randy P. Sabatini†, Marc Lejay, Oleksandr Voznyy*, Edward H. Sargent*

Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada

*E-mails: ted.sargent@utoronto.ca, o.voznyy@utoronto.ca

†These authors contributed equally to the work.
KEYWORDS: quantum dots, Auger recombination, perovskites, transient absorption spectroscopy, infrared light emission

ABSTRACT:

Colloidal quantum dots (CQDs) enable low-cost, high-performance optoelectronic devices including photovoltaics, photodetectors, LEDs and lasers. Continuous-wave lasing in the near-infrared remains to be realized based on such materials; yet a solution-processed NIR laser would be of use in communications and interconnects. In infrared quantum dots, long-lived gain is hampered by a high rate of Auger recombination. Here we report the use of perovskite shells, grown on cores of IR-emitting PbS CQDs, and we reduce thereby the rate of Auger recombination by up to one order of magnitude. We employ ultrafast transient absorption spectroscopy to isolate distinct Auger recombination phenomena and study the effect of bandstructure and passivation on Auger recombination. We corroborate the experimental findings with model-based investigations of Auger recombination in various CQD core-shell structures. We explain how the band alignment provided by perovskite shells comes close to the optimal required to suppress the Auger rate. These results provide a step along the path toward solution-processed near-infrared lasers.
Colloidal quantum dots (CQD) synthesis, photophysics and applications have seen substantial advances in recent years.1–5 CQDs combine high photoluminescence quantum yields, narrow emission linewidths, size-tunable emission, and solution-processability for optoelectronic devices.6,7 Recently, continuous-wave lasing was shown at visible wavelengths using CQDs.5 Near infrared counterparts, of interest in communications, computing,8 and biology,9 remain less advanced along the path to CW lasing.

IV-VI semiconductor CQDs such as PbS and PbSe are among the most extensively studied for NIR applications.6 Their size-tunable synthesis and narrow polydispersity are now well mastered.10–12 Lead chalcogenide CQDs have been demonstrated to exhibit optical gain,13,14 ASE,13,15 and lasing when excited using picosecond pulses;16 however, CW lasing has so far been elusive. One major limitation, their short gain lifetime (τgain < 40 ps at room temperature)16 arises from efficient non-radiative Auger recombination in narrow-gap semiconductor CQDs.17 Furthermore, lead chalcogenide CQDs require at least four excitons to achieve population inversion, a regime in which Auger recombination is strongly enhanced.

Auger recombination can occur via three possible pathways: (1) intradot biexciton Auger recombination, (2) trap-assisted Auger recombination, and (3) diffusion-assisted Auger recombination (Figure 1). Intradot biexciton Auger recombination occurs when two excitons form within a single quantum dot; one exciton then recombines, transferring energy non-radiatively to a remaining charge carrier. The transferred energy will in turn be lost rapidly via thermal relaxation of the hot charge carrier. In trap-assisted Auger recombination, one charge carrier in a biexciton fills a trap, and energy is subsequently transferred to another bandedge charge carrier. Generally,
trap-assisted Auger has been found to exhibit faster Auger recombination rates than those exhibited by a typical biexciton, rendering trap-assisted Auger recombination particularly detrimental to photoluminescence quantum yield (PLQY). In diffusion-assisted Auger recombination, the concentration of charge carriers in a quantum dot is increased by means of diffusion. The larger charge carrier concentrations lead to a higher probability of non-radiative Auger recombination. The latter mechanism increases with charge-carrier mobility.

Strategies to reduce these effects have included passivating ligands, low-trap quantum dot syntheses, and core-shell structures. Each has improved PLQY significantly by mitigating trap-assisted pathways. These strategies have enabled advances in CQD photovoltaics and photodetectors, although the impact of such strategies on intradot Auger recombination in lead chalcogenide CQDs has not been demonstrated.

The suppression of Auger recombination has been demonstrated in allied CQD systems (CdSe and InAs) through the use of judiciously-optimized core-shell structures. We posited that, with an appropriate shell, we could inhibit intradot Auger recombination in PbS NIR quantum dots. CdS shells have been grown on PbS; however, synthetic challenges arise in growing thick shells larger than 1-2 monolayers.

Recently, the development of perovskite shelling has enabled the growth of thicker shells on PbS CQDs. 1 nm thick perovskite shells have recently been documented. These new core-shell structures have facilitated the development of efficient detectors, solar cells, and LEDs.
Herein we find, with the aid of ultrafast transient absorption spectroscopy (TAS), that MAPbI$_3$ perovskite shelling decreases the rate of Auger recombination by over 1 order of magnitude. We distinguish, and quantify separately, the effects of passivation and wavefunction delocalization associated with bandstructure engineering. We distinguish these effects by comparing perovskite shelling to a number of different approaches to CQD passivation. These results provide the foundation for further work on lead chalcogenides in the pursuit of NIR CW lasing.

Results and Discussion

Theoretical model.

We first sought to quantify the effect of the shell’s properties on the intradot biexciton Auger recombination in PbS CQD core-shell systems. The Auger rate can be calculated using Fermi’s Golden Rule:

$$\frac{1}{\tau_A} = \frac{4\pi^2}{\hbar} |M_{if}|^2 \frac{1}{\Gamma_f},$$ \hspace{1cm} (1)

where M_{if} is the electronic matrix transition element of the Coulomb interaction coupling the initial (i) and final (f) excitonic configurations, and Γ_f is the total dephasing rate of the final higher order carrier; the latter accounts for the case when the confinement potential is greater than the energy of the final state and can be understood as a broadening term. In equation (1), the Auger recombination rate is controlled by the transition element M_{if}, which can be determined using one-dimensional wavefunctions by

$$M_{if} = \langle \Psi_i | V(x_1 - x_2) | \Psi_f \rangle$$ \hspace{1cm} (2)

$$= \int \phi_{cbe}^*(x_1) \phi_{cbe}^*(x_2) V(x_1 - x_2) \phi_{vbe}(x_1) \phi_{cbc}(x_2) dx_1 dx_2,$$ \hspace{1cm} (3)
where the potential, V, is the Coulomb repulsion between charge carriers: $V(x) = \frac{e^2}{\kappa |x|}$, and φ_{cbe}, φ_{vbe} and φ_{cbc} represent the conduction bandedge, valence bandedge and conduction band continuum wavefunctions, respectively. Details of computations are provided in the Supporting Information.

We validate the model by calculating the dependence of Auger recombination on shell thickness (Figure 2b). We find that the rate of Auger recombination is strongly inhibited as the thickness of the shell is increased, agreeing with previous work. As the shell thickness is increased, the contrast is also increased between the localized bandedge carrier and the delocalized Auger-excited continuum mode. This contrast is directly manifested as a reduction in the Coulomb integral determining the matrix element in equation (2). In addition to the general trend, however, the matrix element exhibits an oscillatory behavior as a function of shell thickness, which has been reported previously in theoretical work that employed a Kane model formalism.

To explore the optimal core-shell band structure for suppressed Auger, we studied the effect of varying core-shell band edge offsets. We identified three distinct regimes of influence of confinement on Auger rates as a function of the amplitude of the conduction/valence bandedge offset (Figure 2c).

The first, for the case of a small conduction/valence bandedge offset, we term the delocalized:delocalized regime: the lowest-lying state extends substantially over the entire extent of the core:shell dot, as does the higher-lying continuum mode. As a result, the matrix element, M_{df}, is appreciable reduced relative to the unconfined case. This stems from a delocalization of the
single-lobed excitonic mode and a concurrent delocalization of the multi-noded continuum mode reducing the modal overlap. As the offset is increased, we enter the localized:delocalized regime, wherein the lowest-lying state is now localized to the shell, whereas the higher-lying state remains unconfined. In this case, the matrix element remains small due to minimal modal overlap. In the third, highest-offset regime, both the initial and final states are localized. This provides a maximum overlap and the highest Auger rate observed herein.

We find that small-offset shells are best at keeping in the delocalized:delocalized regime and minimizing Auger compared to the higher offset cases. Interestingly, the PbS-MAPbI₃ perovskite system has a small conduction/valence band offset with respect to PbS,35 and we thus identified it to be promising to reduce Auger recombination in PbS CQDs.

Auger Recombination in Perovskite-Shelled PbS.

We next sought to investigate experimentally the effect of perovskite shelling on Auger recombination. The TAS data collected for a CQD film exhibit a single ground state bleach (Figure 3a). Due to thermal relaxation, this bleach red-shifts over time to the bandedge, and it is at this bandedge wavelength that we perform the analysis that follows.

TAS measurements are collected at various pump fluences in order to ascertain the dependence of the bandedge bleach on the pump power (Figure 3b). The presence of intradot Auger recombination is signaled by the emergence of a second, faster decay rate. We plot the long-time bleach (i.e., ~8 ns) as a function of pump fluence and fit to \(B = B_0(1 - \exp(-\langle N_p \sigma_c \rangle)) \). By applying this simple model in which the only assumption is of Poissonian statistics,36 we acquire
σ_c, the absorption cross-section per dot (Figure 3c). This value is used to determine the average number of excitons per dot produced by a given pump fluence, $\langle N \rangle$ (Figure 3b).

At low pump fluences ($\langle N \rangle \ll 1$) multiphoton absorption is negligible, and we observe only single exciton recombination. At intermediate pump fluences ($\langle N \rangle \approx 1$), shorter-lived biexciton intradot Auger recombination can be discerned. At higher pump fluences, Auger recombination dominates. We sought to separate out the various multiphoton Auger processes: to do this we employed multiple exponential fittings at each pump fluence, allowing us to extract the biexciton intradot Auger lifetime (Figure 3d).

We carried out this Auger recombination lifetime analysis both on oleic acid passivated 950 nm PbS CQDs (CQD-OA, Figure 4a), and also on perovskite shelled 950 nm PbS CQDs (CQD-Per, Figure 4b). The 950 nm CQD-OA film exhibited an Auger lifetime of 17+/−3 ps, and this agrees well with previously reported values.37,38 It is important to distinguish the effect of diffusion-assisted Auger (Figure 1d) on the TAS traces to avoid misinterpretation. Diffusion-assisted Auger becomes appreciable in highly conductive films, such as the CQD-Per film, which enable charge carrier transfer between dots thus promoting Auger recombination. Diffusion-assisted Auger does not pose an obstacle to achieving gain in these materials, in contrast with intradot Auger, since the gain lifetime is limited by the fastest Auger recombination process, and intradot Auger recombination is faster than diffusion-assisted Auger in each sample studied herein. After we account for diffusion-assisted Auger in CQD-Per films (SI), the intradot Auger lifetime is found to exhibit an improvement of over one order-of-magnitude when perovskite shelling is employed.
on 950 nm CQDs (Table 1). A summary of these decay processes, their lifetime, and their respective contributions to the ultrafast transient is provided in Table S7.

We then investigated the origins of this dramatic improvement. Specifically, we hypothesized that it could stem either from the core-shell band structure discussed above, directly impacting the M_{if} matrix element; or, alternatively, differences in the degree of surface passivation could play the dominant role. This motivated us to acquire the Auger recombination lifetimes for well-passivated PbS CQDs: we analyzed Cl-passivated 950 nm PbS CQDs (CQD-Cl, Figure 4c) and thin CdS shell 950 nm PbS CQDs (CQD-CdS, Figure 4d). The former had previously been developed as a means of improving passivation in chalcogenide CQDs. The latter represents one of a small number of strategies to grow shells on lead chalcogenide CQDs; previous studies have found that thin CdS shells have led to improved PLQY evidencing improved passivation.

The Auger lifetime data are summarized in Figure 5a and Table 1. Interestingly, CQD-Cl and CQD-CdS exhibit only moderate improvements compared to CQD-OA. The slight improvement can be attributed to the elimination of surface traps and consequently trap-assisted Auger (Figure 1c) via such passivation schemes. However, passivation does not affect intradot Auger recombination in these systems: intradot Auger recombination can be suppressed only by means of band engineering to manipulate wavefunctions that reduce the matrix element representing the Auger recombination process. The delocalization of wavefunctions caused by the band diagram in CQD-Per leads to the much more notable enhancement in Auger lifetime, consistent with the theoretical modeling.
Table 1. 950 nm PbS Quantum Dot Properties

<table>
<thead>
<tr>
<th>Batch</th>
<th>Auger Lifetime (τ_{xx})</th>
<th>PLQY in solution</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQD-OA</td>
<td>17+/−3 ps</td>
<td>13%</td>
<td>Toluene</td>
</tr>
<tr>
<td>CQD-CdS</td>
<td>35+/−8 ps</td>
<td>21%</td>
<td>Toluene</td>
</tr>
<tr>
<td>CQD-Cl</td>
<td>38+/−7 ps</td>
<td>34%</td>
<td>Toluene</td>
</tr>
<tr>
<td>CQD-Per</td>
<td>300+/−80 ps</td>
<td>- *</td>
<td>BTA</td>
</tr>
</tbody>
</table>

*The perovskite shelling involves a solid-state exchange making PLQY in solution non applicable.

Given the motivation to develop PbS CQDs for a wide range of NIR applications, we sought to investigate whether Auger recombination could also improve for larger CQDs with narrower bandgaps. To this end, we investigated the Auger lifetime in 1300 nm PbS CQDs (Figure 5b and Table 2). In this case, untreated PbS CQDs are passivated by oleylamine (CQD-OLA). It is clear that the Auger lifetime has improved for this system as well, albeit to a lesser degree. The reduced enhancement may be attributed to weaker Coulombic interactions between charge carriers in larger CQDs (i.e., large CQDs inherently exhibit slower Auger recombination rates). This is verified theoretically using the model presented earlier. Figure S6 depicts the effect of the core-shell band edge offset on the Auger rate (as was done for Figure 2c) for two different sizes of PbS CQDs. It is evident that smaller QDs exhibit a more drastic enhancement due to an appropriate shell compared to the unshelled Auger rate value ($\frac{E_{CS} - E_{CC}}{E_g} \rightarrow \infty$).
Table 2. 1300 nm PbS Quantum Dot Properties

<table>
<thead>
<tr>
<th>Batch</th>
<th>Auger Lifetime (τ_{xx})</th>
<th>PLQY in solution</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQD-OLA</td>
<td>113+/−15 ps</td>
<td><1%</td>
<td>Toluene</td>
</tr>
<tr>
<td>CQD-CdS</td>
<td>126+/−10 ps</td>
<td>18%</td>
<td>Toluene</td>
</tr>
<tr>
<td>CQD-Per</td>
<td>250+/−40 ps</td>
<td>- *</td>
<td>BTA</td>
</tr>
</tbody>
</table>

*The perovskite shelling involves a solid-state exchange making PLQY in solution non applicable.

Conclusions

In summary, we found that MAPbI$_3$ perovskite shelling decreases the rate of Auger recombination by over 1 order of magnitude in PbS CQD films. Ultrafast TAS allowed the identification and isolation of 3 different types of Auger recombination: intradot Auger, trap-assisted Auger, and diffusion-assisted Auger. By comparing perovskite shelling to various methods of PbS CQD passivation, we separated the effects of passivation and modal delocalization due to band structure on Auger recombination. Furthermore, theoretical calculations corroborate our findings that only modal delocalization, and not passivation, has a large impact on intradot Auger recombination. We posit that the enhanced Auger lifetimes enabled by perovskite shelling could make use of the inherently high mobility of perovskite semiconductors to allow the development of solution-processed electrically-injected NIR CW lasing. These results provide the foundation for further work on lead chalcogenides in the pursuit of NIR CW lasing.

Experimental Methods

Synthesis of oleic acid-capped lead sulfide (all ~950 nm dots, ~1300 nm CQD-CdS dot cores)
Quantums dots were synthesized according to literature.40 The lead oleate precursor was made by heating PbO in the mix of Oleic Acid and 1-Octadecene at concentrations 0.05±0.2 M under Ar at 100 °C for 16 h. The sulfur precursor was prepared in the glovebox by mixing 420 µL of hexamethyldisilathiane (TMS) with 10 mL of pre-pumped ODE.

Synthesis of oleylamine-capped lead sulfide (~1300 nm CQDs and CQD-PVK cores)

Quantum dots were synthesized according to literature.10 However, final PbS dots capped with oleylamine were not stable and over time resulted in aggregation and PbCl\textsubscript{2} precipitation. To overcome this issue, we slightly modified the synthesis. A mix of octylamine and hexylamine was introduced before quenching with hexane. Based on our observations, short carbon chain amines serve as extra capping ligands and prevents dot aggregation.

Chloride passivation

Chloride treatment was performed in synthesis during the cooling stage. Tetrabutylammonium chloride (TBAC) was prepared by heating at 200 °C in Oleylamine followed by one hour pumping at 100 °C. TBAC (0.6mM) was injected into crude solution at 100 °C during the cooling stage. The reaction mixture was cooled down to 35 °C and the dots were isolated via precipitation with acetone and redispersion in toluene.

CdS passivation

PbS cores were passivated according previously reported protocols.23

Perovskite shell growth
The perovskite shell was grown on 950 nm CQDs according to literature. The perovskite shell was grown on 1300 nm CQDs with some modifications to the literature. 1300 nm CQD cores with oleylamine capped ligands were found to undergo ligand exchange much more readily than 1300 nm CQDs cores with oleic acid capped ligands. In the redispersion step, pure butylamine did not redisperse the CQD-PVK. We mixed some of the initial perovskite precursor solution (in DMF) with butylamine (~1:20) to solubilize the CQD-PVK. We also found that redispersing the CQD-PVK with hexylamine and butanone worked as well.

Steady-state characterization

Films were measured for linear absorption with a PerkinElmer Lambda 950 UV/Vis/NIR spectrophotometer. Photoluminescence quantum yield measurements were collected with an integrating sphere using a Horiba Fluorolog TCSPC system with an iHR monochromator and either a H10330-45 or H10330-75 photomultiplier tube.

Transient absorption spectroscopy

A Yb:KGW regenerative amplifier (Pharos, Light Conversion) was used to generate the 1030 nm fundamental (5 kHz). A portion of the beam was sent through an optical parametric amplifier (Orpheus, Light Conversion) to generate the pump pulse. For ~950 nm and ~1300 nm dots, we chose 800 nm and 1030 nm pumps, respectively; this was done to keep excitations a fixed energy above the bandgaps. The pump and residual fundamental were then sent into an optical bench (Helios, Ultrafast). The fundamental was passed through an optical delay stage to control the time delay between pulses. The fundamental was then focused through a NIR crystal (Ultrafast) to generate a NIR white light continuum probe. The frequency of the pump was halved with an optical
chopper. Both the pump and probe were then focused onto the sample, which was translated 1 mm/s. The probe was then directed toward a fiber, which was coupled into a NIR detector (Ultrafast).

Figure 1. Auger recombination processes. (a) Radiative recombination (b) Traditional intradot biexciton Auger recombination. (c) Trap-assisted Auger recombination, where a carrier interacts with a trap state. (d) Diffusion-assisted Auger recombination.
Figure 2: Modeling Auger Recombination in CQDs. (a) Charge carrier wavefunctions in systems where Auger couples to confined continuum states (left) and systems where Auger couples to delocalized continuum states (right). (b) Change in Auger recombination rates as a function of shell thickness. (c) Change in Auger recombination rates as a function of core-shell conduction band offset; E_{CS}, E_{CC} and E_g represent the shell bandedge, core bandedge and core bandgap, respectively. Three regimes are identified: DD (delocalized-delocalized): delocalized bandedge state couples to delocalized high-order mode (left green); LD (localized-delocalized) localized bandedge state couples to delocalized high-order mode (right green); and LL (localized-localized): localized bandedge state couples to localized high-order mode (red).
Figure 3: Auger recombination rate analysis. (a) Contour plot of CQD-OLA, showing spectral changes as a function of time. (b) Power dependent kinetic traces at the exciton bleach. (c) TA signal at long times, after Auger recombination, as a function of pump fluence. Fitting this curve allows calculation of excitons per dot. (d) Isolated decay curve of biexciton Auger recombination.
Figure 4: Power dependent Auger recombination. Power dependent kinetic traces at the exciton bleach for (a) CQDs-O, (b) CQD-Per, (c) CQD-Cl, and (d) CQD-CdS. Auger lifetime of CQD-Per is much longer than the other samples.
Figure 5: Auger recombination comparison. (a) Intradot biexciton Auger lifetime for 950 nm CQDs. (b) Intradot biexciton Auger lifetime for 1300 nm CQDs.
ASSOCIATED CONTENT

Supporting Information.

The following files are available free of charge.

Supporting Information (.pdf)

AUTHOR INFORMATION

Corresponding Authors
*E-mails: ted.sargent@utoronto.ca, o.voznyy@utoronto.ca

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

† These authors contributed equally.

ACKNOWLEDGMENT

This publication is based in part on work supported by the Ontario Research Fund-Research Excellent Program and by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

The authors wish to thank Sjoerd Hoogland, Larissa Levina, Elenita Palmiano, Mengxia Liu and James Fan for their assistance and insightful discussions.

REFERENCES

(1) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang,

(7) Yuan, M.; Liu, M.; Sargent, E. H. Colloidal Quantum Dot Solids for Solution-Processed

Table of Contents Figure