Metabolomics Reveals Energetic Impairments in *Daphnia magna* Exposed to Diazinon, Malathion and Bisphenol-A

Edward G. Nagato, André J. Simpson, Myrna J. Simpson

Content

Supplementary data

Citation (for article)

This is supplementary data for an article published in *Aquatic Toxicology*. The final version, copy edited version of the article is available online at: https://doi.org/10.1016/j.aquatox.2015.11.023.

How to cite TSpace items

Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the author manuscript from TSpace because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page.

This content was made openly accessible by U of T Faculty. Please tell us how this access benefits you. Your story matters.
Metabolomics Reveals Energetic Impairments in *Daphnia magna* Exposed to Diazinon, Malathion and Bisphenol-A

Edward G. Nagato, André J. Simpson, Myrna J. Simpson*

Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada

*Corresponding author: Tel. (416) 287-7234, Fax: (416) 287-7279, e-mail address:
myrna.simpson@utoronto.ca
Figure S1. Loadings plots from PCAs for Diazinon (A), Malathion (B) and Bisphenol-A (C). Percentage of explained variance are in parentheses. Numbers indicate the spectral region corresponding to a particular metabolite, identified by the labels.