Syrian Activists Targeted with BlackShades Spy Software:

Authors: Morgan Marquis-Boire and Seth Hardy

FINDINGS

The use of remote surveillance software against activists has been a feature of the ongoing conflict in Syria. In February 2012, CNN reported that “Computer spyware is the newest weapon in the Syrian conflict”. Since then numerous electronic campaigns targeting Syrian activists have been observed. These have included: a phishing campaign involving the compromise of a high profile Syrian opposition figure; malware targeting activists by claiming to be documents regarding the foundation of a Syrian revolution leadership council; and, malware purporting to be a plan to assist the city of Aleppo.

The majority of these attacks have involved the use of Dark Comet RAT. Remote Administration Tools (RAT) provide the ability to remotely survey the electronic activities of a victim by keylogging, remote desktop viewing, webcam spying, audio-eavesdropping, data exfiltration, and more.

The use of Dark Comet in this conflict has been well documented. This RAT was the toolkit used in the malware reported on by CNN and also in the campaigns using fraudulent revolutionary documents.

In addition to Dark Comet, we have seen the use of Xtreme RAT reported on by the Electronic Frontier Foundation (EFF) and F-Secure.

Today, the EFF and Citizen Lab report on the use of a new toolkit by a previously observed attacker. This actor has been circulating malware which surreptitiously installs BlackShades RAT on victims machines. This RAT is a commercial tool which advertises the following:

“BlackShades Remote Controller also provides as an efficient way of turning your machine into a surveillance/spy-device or to spy on a specific system.”
It is being distributed via the compromised Skype accounts of Syrian activists in the form of a “.pif” file purporting to be an important new video.

On execution the following files are dropped:

<table>
<thead>
<tr>
<th>Path</th>
<th>MD5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C:\Documents and Settings\Administrator\Templates\VSCover.exe</td>
<td>291ce2c51e5ea57b571d6610e1d324f9</td>
</tr>
<tr>
<td>C:\DOCUME1\ADMINI1\LOCALS~1\Temp\local3.exe</td>
<td>78902e074a7ed514e0f5dca584cd05a5</td>
</tr>
<tr>
<td>C:\DOCUME1\ADMINI1\LOCALS~1\Temp\D3D8THK.exe</td>
<td>0d1bd081974a4dcdeee55f025423a72b</td>
</tr>
<tr>
<td>C:\DOCUME1\ADMINI1\LOCALS~1\Temp\data.dat</td>
<td></td>
</tr>
</tbody>
</table>

A keylogger file is then created in the user’s temporary directory:

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\data.dat

Note that ‘D3D8THK.exe’ is copy of the original file. ‘local3.exe’ appears to be a version of AppLaunch.exe, the Microsoft ClickOnce Launcher.

The following registry entries are created to allow the dropped programs through the firewall.
Note the misspelling of “Messenger” as “Messanger”.

“VSCover.exe” is added to autoruns to enable persistence.

VSCover.exe contains "Libra" (30209 bytes) as a .NET resource which is encrypted using a weak method. Decryption is possible using the key stored internally. Once decrypted, it is loaded as a .NET assembly and the Piept() function is called.¹

One characteristic stands out in the Class1.Main() function: invoking an obfuscated function in a resource.

Tracing the value of Resource12.Method provides:

```csharp
Resource8.encryptedassembly = Resource13.decrypt(Libra, "zuk65x7F0h8034E2KJ8rkjZ2BudbdqD");
Resource10.Appdomainn = AppDomain.CurrentDomain.Load(Resource8.encryptedassembly);
```

Substituting out the functions and variables, the decryption routine looks like this:

```csharp
{
    reverse(x);
    Resource1.cdfsdfsf = x[x.length - 1];
    Resource3.kkuythfgh = Encoding.Defaults.GetBytes(y);
    Resource2.cfhtfgjdty = new byte[x.length + 1];
    int z = 0;
    while (z <= (x.Length - 1))
    {
        Array.Reverse(Resource3.kuytffgfh);
        if (Resource4.Bravo == (Resource3.kuytffgfh.Length - 1))
        {
            Resource4.Bravo = 0;
        }
        else
        {
            Resource4.Bravo++;
        }
    }
    z++;
}
Array.Resize(Resource2.cfhtfjdty, Resource2.cfhtfjdty.Length - 2);
return Resource2.cfhtfjdty;
```

```csharp
public static byte[] decrypt(byte[] x, string y)
Libra has 3 classes: Mameloane\(^2\), RuntimePortableExecutable (implementing PE headers, methods for binaries to run in WinXP and Win7), and Xorxorxor (implementing decryption methods including XOR). Libra also contains the VSCover.exe program itself as an unencrypted resource.
```
As seen above, VSCover will call the Mameloane.Piept() function in Libra. Piept() will reload the main D3D8THK program, splitting it by the string “p8D-T-4M0t_c__hy”. This string can be found in an invalid Version resource of the original binary. Looking at the code, it can be seen that the data in this resource splits out to another encrypted binary and some configuration options.

The fields extracted from the resource this way are:

[0]: pre-useful stuff
[1]: encrypted binary
[2]: empty - used as key in Xorxorxor(key).PolyDeCrypt(binary)
[3]: False - does Piept() call Startup()?
[4]: True - does Piept() call Injection()?
[5]: False - does Piept() call AppLaunch()?
[6]: True - does Piept() call Vbc()?
[7]: False - does Piept() call FilePersistece()?
[8]: empty

The resource start and first marker string, followed by the encrypted binary data:

```
0000c320 64 00 75 00 63 00 74 00 4e 00 61 00 6d 00 65 00 d.u.c.t.N.a.m.e
0000c330 00 00 00 00 2e 00 4e 00 65 00 74 00 20 00 53 00 e.a.l...P.
0000c340 65 00 61 00 6c 00 00 00 34 00 10 00 01 00 50 00 .r.o.d.u.c.t.V.e.
0000c350 72 00 6f 00 64 00 75 00 63 00 74 00 56 00 65 00 r.s.i.o.n.1...
0000c360 72 00 73 00 69 00 6f 00 6e 00 00 00 31 00 2e 00 .A.s.s.e.m.b.l.
0000c370 33 00 2e 00 31 00 2e 00 30 00 00 00 38 00 10 00 y.V.e.r.s.i.o.n.
0000c380 01 00 41 00 73 00 73 00 65 00 6d 00 62 00 6c 00 3...1.0...8...
0000c390 79 00 20 00 56 00 65 00 70 00 73 00 69 00 66 00 .A.s.s.e.m.b.l.
0000c3a0 6e 00 00 00 31 00 2e 00 33 00 2e 00 31 00 2e 00 y.V.e.r.s.i.o.n.
0000c3b0 30 00 00 00 44 00 00 00 00 00 56 00 61 00 72 00 3...1.3.1...
0000c3c0 46 00 69 00 6c 00 65 00 6f 00 49 00 6e 00 66 00 .0..D...Var.
0000c3d0 00 00 00 00 00 00 00 42 00 00 00 00 00 00 00 .F.i.l.e.I.n.f.o.
0000c3e0 6e 00 73 00 63 00 61 00 61 00 61 00 62 00 6c 00 ...$..T.r.a.
0000c3f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .n.s.l.a.t.i.o.n.
0000c400 30 74 5f 63 5f 5f 5f 68 79 2d 7a 0d 64 64 67 67 0...D8D-T4M
0000c410 67 6b 6b 6b 6b 6b 6b 6b 6b 66 69 69 69 69 69 gkkkkkiii!!!!!!!
0000c420 21 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 !aaaaaaaaaaaaa
0000c430 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 aaaaaaaaaaa
0000c440 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 aaaaaaaaaaa
0000c450 98 b9 71 72 72 be 8b ac 00 68 d1 44 64 d4 46 6b 5 c..r.h.D.F.
0000c460 8e ef 5c 7c df 40 ae 1c 8b ff 1f 81 e6 06 78 ed \.|@.....x.
0000c470 5b 7b e4 52 72 b6 05 58 78 e5 54 b8 1d 4b 58 65 [{.R..Xx.T..KXe
```
The configuration options (note the True and False strings):

No matter what the configuration options, Piept() will decrypt the binary, possibly using a one-byte XOR key first. In this case, the field was empty (see above at 0x60419), so the following decryption was used only:

```plaintext
my $i = 0;
for($i = scalar(@x)-1; $i >= 1; $i--) {
    $result[$i-1] = chr( (ord($x[$i]) - ord($x[$i-1])) % 256 );
}
```

The binary decrypts to a Visual Basic executable, which can be identified as BlackShades RAT:

This makes an outbound network connection on 4444/TCP to alosh66.myftp.org. On June 11th 2012, this had the address 31.9.170.140.
This command and control domain is similar in naming convention to that used by the malware reported in the Guardian on March 20, 2012. In that case, a site which appeared to be a YouTube channel hosting pro-revolution videos installed malware disguised as an Adobe Flash Player update.

Instead of Adobe Flash, the malware installed Dark Comet RAT and contacted alosh66.no-ip.info.

On consecutive days in March 2012, the command and control domains for both pieces of malware pointed to the same IP address in Syrian (STE) address space:

2012-03-16 alosh66.no-ip.info. A 31.9.48.15
2012-03-17 alosh66.myftp.org. A 31.9.48.15

This evidence, combined with the similar naming convention, suggest that these attacks have been performed by the same actor.

This malware package (new_new .pif) is not well detected at this time, but it is detected by some anti-virus vendors. This version of the Black Shades RAT implant (VSCover.exe), is at the time of analysis (Jun 16th 2012) undetected.

We recommend following the recommendations laid out the in the EFF blog post for detection of this malicious software and, furthermore, exercising caution when receiving executable files via Skype or other internet chat media even if they supposedly come from trusted acquaintances.

FOOTNOTES:

1 piept is Romanian for "chest."
2 Romanian for “nipples”.
3 The DNS registrar has since been contacted and the domain has been shut down.

Media coverage: SC Magazine.