Predation and food-weather interactions drive colony collapse in a managed metapopulation of Arctic Terns (Sterna paradisaea)

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Zoology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>cjz-2016-0281.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>24-Apr-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Scopel, Lauren; University of New Brunswick, Biology Diamond, Antony; University of New Brunswick,</td>
</tr>
<tr>
<td>Keyword:</td>
<td>predator management, bioindicator, bottom-up ecosystem control, top-down ecosystem control, Arctic Tern, Sterna paradisaea, conservation</td>
</tr>
</tbody>
</table>
Predation and food-weather interactions drive colony collapse in a managed metapopulation of Arctic Terns (Sterna paradisaea)

L. C. Scopel, University of New Brunswick, 10 Bailey Drive, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada, l.scopel@unb.ca

A. W. Diamond, University of New Brunswick, 10 Bailey Drive, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada, diamond@unb.ca

Corresponding author:

Lauren C. Scopel

10 Bailey Drive
University of New Brunswick
Fredericton, New Brunswick E3B 5A3
Canada
l.scopel@unb.ca
1-506-449-8044
Predation and food-weather interactions drive colony collapse in a managed metapopulation of Arctic Terns (*Sterna paradisaea*). L. C. Scopel and A. W. Diamond.

Abstract

Seabirds are considered bioindicators of bottom-up ecosystem processes, owing to seabirds’ dependence on marine prey. However, ground-nesting seabirds are susceptible to predation, which can limit their use as bioindicators. Machias Seal Island (MSI) supported the largest colony of Arctic Terns (*Sterna paradisaea* Pontoppidan, 1763) in the Gulf of Maine metapopulation, but prolonged breeding failure led ~90% of terns to abandon the colony in 2006. We analyzed twelve years of food, weather and predation data using logistic regression models to determine which had the strongest influence on breeding success. Food-weather interactions were important; under low rainfall, more euphausiids (*Meganyctiphanes norvegica* Sars, 1857) in the diet increased breeding success, but euphausiids had a negative effect as rainfall became moderate or high. Predation by Herring Gulls (*Larus argentatus* Pontoppidan, 1763) increased following the cessation of lethal predator control; we identified a predation threshold of 25%, beyond which terns could not breed successfully. The collapse of MSI’s tern colony can be attributed entirely to gull predation. The breeding success of terns at MSI cannot be used as a bottom-up ecosystem bioindicator without accounting for predation. Managers of ground-nesting seabirds should consider predation and food as equally valid potential causes of population or reproductive declines.

Keywords: predator management, bioindicator, bottom-up ecosystem control, topdown ecosystem control, Arctic Tern, *Sterna paradisaea*, conservation
Introduction

Seabirds are regarded as important bioindicators or sentinels of changes in marine ecosystems, owing to seabirds’ dependence upon marine prey (Bost and Le Maho 1993; Piatt et al. 2007). Aspects of seabird foraging and demography may serve as a proxy for ecosystem processes if the relationship between them is strong (Durant et al. 2009). The quality of seabird species as bioindicators varies based on their size and foraging ecology, where small, surface-feeding seabirds like terns and kittiwakes are less able to overcome poor foraging conditions to support their young (Pearson 1968; Furness and Tasker 2000), and thus provide an honest signal of foraging quality. In the North Atlantic, terns and kittiwakes are thus likely to be the first seabirds to show a negative response in their breeding success when foraging conditions deteriorate (Monaghan 1992; Frederiksen et al. 2008). Sudden negative responses in tern or kittiwake reproduction or abundance may therefore indicate negative changes in the local marine environment (Monaghan 1992; Wanless et al. 2007).

Breeding Arctic Terns (*Sterna paradisaea* Pontoppidan, 1763) cannot compensate for food shortage; both adults in a pair must spend most of their time budgets foraging for chicks (Pearson 1968; Kirkham 1986), and may abandon a breeding attempt mid-season if there is insufficient food (Langham 1968; Monaghan et al. 1989). Food shortage can manifest as a lack of high quality prey early in the breeding season, leaving adults with fewer energy reserves (Monaghan et al. 1989; Wendeln and Becker 1999), or as insufficient energy density in the available prey to sustain chicks during rearing (Dunn 1975; Massias and Becker 1990; Wanless et al. 2005). The highest quality prey are fish with a high lipid content (e.g. Atlantic herring (*Clupea harengus* L., 1758), Budge et al. 2002), but Arctic Terns feed their chicks lower quality invertebrate prey at high rates when higher quality prey are not available (Hawksley 1957; Kirkham 1986). For Common Tern chicks (*S. hirundo* L., 1758), invertebrate prey can result in a net loss of chick mass if fed for a long period of time (Massias and Becker 1990), but Arctic Terns can fledge chicks successfully on a diet composed primarily of invertebrates in spite of the higher foraging cost (Schubel 1992; North 1994).
In addition to their sensitivity to changes in prey, small-bodied ground-nesting species like terns are particularly vulnerable to predators (Lavers et al. 2010), which can confound their use as bioindicators (Furness and Tasker 2000). When terns cannot deter predators, they will abandon a breeding attempt, and sometimes disperse permanently from a colony if predation is severe (Austin 1940; Donehower et al. 2007). Further complicating matters, food and predation can have interactive effects on seabird populations and exacerbate poor conditions (Regehr and Montevecchi 1997).

The influence of food on breeding success is the quintessential interaction between seabirds and the marine environment, and is the focus of studies investigating seabirds as bioindicators (Cairns 1987). A common criticism of using seabirds as bioindicators is that the relationship between ecosystem processes and seabird responses must be simple, clear and strong to be useful (Durant et al. 2009; Grémillet and Charmantier 2010). Although high predation pressure can indicate increased food stress for predators of seabirds, top-down influences on seabirds obfuscate the interaction of interest between seabirds and forage fish communities. Exclusive focus on food may lead the impact of predation on breeding success to be overlooked, to the point of recommending the removal of high predation colonies or years from a dataset (Parsons et al. 2008). Predation is often dismissed without quantitative assessment of its impact at a colony, even though some consider predation to be the most important determinant of breeding success (Côté and Sutherland 1997; O’Connell and Beck 2003; Kress and Hall 2004). Although bottom-up and top-down factors have been identified as major forces affecting seabird populations, they are rarely considered together in quantitative analyses (but see Suryan et al. 2006; Oro and Pradel 2012). The lack of attention given to predation in the context of other aspects of seabird ecology makes the impact of predation difficult to estimate (but see Lavers et al. 2010).

The Gulf of Maine (hereafter GOM) supports a well-studied metapopulation of Arctic Terns (Devlin et al. 2008). This metapopulation was stable throughout the 20th century, largely owing to three colonies that were historically protected by lighthouse keepers (Drury 1973; Anderson and Devlin 1999). Although the increase of large Larus gulls limited the breeding habitat for small seabirds during the mid and late 1900s,
the persistence of these three colonies protected the Arctic Tern metapopulation from sharp declines that were observed in the other seabird populations in this region (Drury 1973; Korschgen 1979). Since the initial expansion of the large gull populations and ranges in the 1920s, smaller seabirds like terns have been forced into nesting at the few managed sites (Drury 1973); in 2014, 98% of Common Terns and 100% of Arctic Terns nested at managed colonies owing to a lack of suitable gull-free tern habitat in the GOM. While the lack of unoccupied alternative sites is unusual, gull management has been performed since the early 1900s in the GOM, and represents the most effective way to protect terns in this region (Kress and Hall 2004).

Machias Seal Island (MSI) represented the largest Arctic Tern colony in the GOM, and was the largest Arctic Tern colony in North America (Gaston et al. 2009). Notes from lighthouse keepers indicate that the colony was large and generally stable, but breeding was negatively affected by bad weather, food shortage, predation by Herring Gulls (Larus argentatus Pontoppidan, 1763), and human interference (MacKinnon and Smith 1985). In spite of these setbacks, breeding failure (<0.1 chicks fledged per nest) was rare, and abandonment of the colony was recorded only once, in 1944. In spite of the stability of this colony and increases projected by Devlin (2006), MSI experienced breeding failure for nine consecutive years (2005-2013); 90% of the tern colony abandoned in 2006 (Gaston et al. 2009). Given that chronic low productivity can trigger dispersal in many birds (Greenwood and Harvey 1982; Burger 1984; Danchin et al. 1998), we consider the crash in breeding success to be the impetus for the terns’ dispersal. Although the MSI terns initially dispersed to other monitored colonies in the metapopulation (especially Petit Manan Island, Fig. 1), the number of Arctic Terns in the GOM has declined by 56% since 2004. In light of changing oceanographic conditions in this region (Greene and Pershing 2007; Nye et al. 2009), the sudden loss of this colony may signal that environmental conditions in the GOM have reached a critical threshold where terns can no longer breed successfully.

The collapse of MSI’s tern breeding success was attributed to some combination of poor food, poor weather, and high predation (Diamond 2009; Gaston et al. 2009), but the individual contributions of these
factors were unclear. The virtual disappearance of herring from the tern diet on MSI was suspected to be a major contributing factor (see Fig. S1 in Supporting Information1). Our objective was to determine the relative contributions of food, weather, and predation to the decline in breeding success at MSI’s tern colony. We developed three hypotheses:

1.) Breeding success declined because of a loss of high-quality fish from the tern diet.

2.) Breeding success declined because of more frequent bad weather.

3.) Breeding success declined because of increased predation by gulls.

Materials and Methods

MSI is a 9.5 ha island located ~20 km southwest of Grand Manan Island, New Brunswick, Canada. A.W.D. has conducted seabird monitoring on MSI since 1995 (Diamond and Devlin 2003, protocol available at http://www.unb.ca/research/alar/msi-seabirds/protocol-methods.html, data summaries available at http://www.unb.ca/research/alar/msi-seabirds/data-summaries.html). Field work was approved annually by the Animal Care Committee at the University of New Brunswick. The island has operated as a lighthouse station for the Canadian Coast Guard since 1832, and permanent buildings and boardwalks are located at the centre of the colony to permit year-round occupation. Terns have nested at the colony since at least 1873 (Kress et al. 1983; MacKinnon and Smith 1985). Researchers arrived on the island in early May and departed in mid- to late August. Temporary research blinds were erected around the island for the duration of the monitoring season. In addition to the terns, there were other seabird species on the island, totaling roughly 10,000 pairs of birds.

Food

Arctic terns bring food to their chicks one item at a time, carried visibly in the bill. Prior to hatch, a subset of nests at two or more research blinds was selected for feeding observations, based on their

1 Please see supporting information for more information.
proximity and visibility from research blinds. Observers watched up to eight nests for 3 hour periods, recording the number of feedings, the species of prey, the length of the item relative to the adult’s bill length, and the number of hours each chick was observed. Prey specimens were collected opportunistically to determine length-mass relationships for each prey species; these conversions were retroactively applied to prey deliveries to estimate the wet mass (g) of each prey sample. For frequently observed species (herring, white hake (*Urophycis tenuis* Mitchill, 1814), butterfish (*Poronotus triacanthus* Peck, 1804), sand lance (*Ammodytes* spp. Bonaparte, 1832), euphausiid (*Meganyctiphanes norvegica* Sars, 1857), haddock (*Melanogrammus aeglefinus* L., 1758), and larval fish), annual wet masses were estimated to compile metrics of prey quality and quantity for each season. Taxon estimates were represented as annual rates (mass (g) feeding$^{-1}$ and mass chick-hour$^{-1}$) and as a proportion of total diet. Since few or no chicks hatched during 2006-2013, feeding observations were not performed, and no prey data were collected. Feeding data from coexisting Atlantic Puffins (*Fratercula arctica* L., 1758) were collected during all years, and serve as a qualitative estimate of prey abundance from 2006-2013 (Table S1). Please see Table S2 and Appendix SA in SI for more detail about provisioning data, including methods and prey conversion formulae.

Prey abundance, prey quality, and foraging behaviour have all been identified as important aspects of seabird diet (Wanless et al. 2005; Jodice et al. 2006; Olsson et al. 2008). To account for these different aspects of diet, we compiled several prey metrics: good quality food, poor quality food, quantity of food, and feeding rate. Herring, sand lance, and hake were considered “good quality” food, encompassing metamorphosed fish that have high energy density. Euphausiids, larval fish, and butterfish were considered “poor quality” food. Invertebrates and larval fish have lower energy density and are smaller than metamorphosed fish, requiring a higher feeding rate to sustain chicks. Butterfish, although high in energy density, are too deep-bodied to be consumed by most tern chicks. Haddock were observed only in 2014. An independent estimate of numbers of juvenile herring in the Bay of Fundy was provided from the Department of Fisheries and Oceans virtual population analysis (hereafter VPA).
Weather

Researchers collected weather data daily at 9:00 and 21:00 during each breeding season. Data included air temperature, wind speed, and precipitation. We divided weather metrics into three periods of the breeding season: pre-lay (May), incubation (June), and chick rearing (July). Two additional time periods were included for the first and second weeks post-hatch, when chicks are unable to thermoregulate (week 1) or are too large to be brooded by their parents (week 2) and thus may be more susceptible to exposure (Langham 1968; Dunn 1975; Paquet 2001). Many studies report most chick mortality during the first 5-10 days of life (e.g. Hawksley 1957; Langham 1972).

Predation

The history and rationale of MSI’s predator control regime is described in Scopel and Diamond (2017). During 1995-1999, the Canadian Wildlife Service performed targeted lethal control of predatory large gulls as needed during the breeding season. During 2000-2012, lethal control was suspended and only nonlethal control (scaring and nest destruction) was permitted. Limited lethal control was resumed in 2013-2015. These different approaches to predator management serve as an inadvertent experiment to investigate the importance of lethal control at MSI.

Individual gulls vary in their propensity to depredate tern eggs, because only 1-4% of gulls specialize in seabird prey (Spear 1993; Hario 1994; Guillemette and Brousseau 2001). Consequently, gull abundance is a poor predictor of predation intensity. Instead, we measured the proportion of eggs that were depredated or disappeared from our monitored productivity plots (Fig. S2); MSI has no other predators of tern eggs. We could not estimate chick predation accurately, and so our models use estimates of egg predation only.

Response variables

Breeding success of Arctic Terns was recorded in all years in fenced and unfenced plots in different vegetation types on the island. Fenced plots around the periphery of the island were not erected after
2006 because the area of the tern colony decreased following abandonment, and thus these plots had no
terns nesting in them. Plots were checked daily beginning in late May of each year, and followed at least
through mid-July to check for clutch initiations and egg predation. After hatch, plots were checked every
1-3 days, depending on weather. Each egg laid was followed to determine its fate (failed, hatched,
fledged). Chicks that hatched were also banded at hatch and measured for wing chord and mass at least
twice during their linear growth period (day 5-15). Chicks seen alive through day 15 were considered
fledged, subtracting any later found dead. Chicks that disappeared before day 15 were considered dead.

Two metrics of breeding success were compiled: the proportion of nests that fledged at least one chick
(nest success), and the number of chicks that each nest fledged successfully (productivity: zero, one, or
two). We were interested in the decrease of successful nesting by terns after 2000, and a binary response
was the simplest way to investigate the predominant change in reproduction on MSI. However, Arctic
Terns on MSI rarely fledge two chicks in a season, and we hypothesized that exceptional years may lead
to higher productivity per nest, which may be overlooked when using a binary response variable. Adults
may change their foraging effort at hatch depending on their perception of their ability to raise more than
one chick, and second- or third-hatched chicks may be left to starve early in rearing, in spite of low
energetic requirements then (Langham 1972; Safina et al. 1988; Monaghan et al. 1992). We thus
performed a second analysis using a trinomial response for number of chicks fledged to investigate
conditions that led to greater production. We treated each response group as an independent outcome by
allowing the slopes for each response to vary to account for potential behavioural differences between
adults at 1- and 2-chick nests.

Breeding success on MSI was 0 (complete breeding failure) from 2006-2013, precluding analysis of these
years. Please see Table S3 for a complete summary of reproductive data used in these analyses.

Analyses
We hypothesized that food, weather, and predation each contributed to the collapse of MSI’s tern colony, and thus wanted to compare these hypotheses directly using Akaike’s Information Criterion corrected for small sample sizes (AICc). A preliminary set of predictor variables was developed, for relevant food, weather, and predation data (Table S4). Clutch size data were also included to correct for annual variations in clutch size. Data were normalized. Correlations between predictor variables were checked for multicollinearity and were noted if >0.5 and flagged if >0.7 (Tabachnick and Fidell 2013). Flagged variable pairs were not included in models together.

We used logistic regression models to assess changes in annual breeding success (hereafter “nest analysis”). Individual covariates were not available for all nests, so the response data were grouped by year into counts of successful (1) or unsuccessful (0) nests for 12 years of data (1995-2005, 2014). We used multinomial logistic regression to assess changes in the number of chicks fledged per nest for these 12 years of data (hereafter “productivity analysis”).

We developed a series of global models following a consistent pattern of food, weather, and predation influences on breeding success:

$$\text{Breeding success} \sim \text{good food } + \text{poor food } + \text{weather}_1 + \text{weather}_2 + \text{predation} + \text{interaction}$$

We hypothesized five a priori two-way interactions between food, weather, and predation (Table S4), but included only one interaction per model for ease of interpretation. For further details on the rationale behind included interactions, see Appendix SB. We hypothesized two quadratic relationships: feeding rate and wind speed (Dunn 1975). All models with interactions or quadratic terms included the associated main effects (Aiken and West 1991). Goodness of fit was assessed using our hypothesized best global model, including herring, euphausiid, predation and rain metrics. Goodness of fit was estimated by G^2 and was 2.4912 ($P=0.78$, df=5) and 9.1913 ($P=0.51$, df=10) for the nest and productivity analyses, indicating a reasonable fit and no overdispersion (Agresti 2007). Tolerances for global models were checked following Quinn and Keough (2002 p. 128), and variable pairs <0.2 were flagged. Tolerance is
calculated by computing $1-r^2$ of predictor X_i against the other predictor variables in a model; it represents the overlap in explained variance between predictors included in the same model.

For the nest analysis, global models were developed using the glm() function in R 3.1.2 (http://cran.r-project.org). Global models were run using the dredge function (package MuMIn v.1.10.5, Bartoń 2014) to include all subsets of these global models. Dredge results were collated and redundant models were removed. For the productivity analysis, global models were developed using the vglm() function (multinomial family) in package VGAM (Yee 2015). Results of all models were collated and ranked (Appendix SC1). Model fit of highly ranked models was checked *a posteriori* by comparing the residual scaled deviance to the residual df (Agresti 2007).

Our confidence set of models was cut off at 95% of cumulative model weight (Burnham and Anderson 2002, p. 169), but we reported results up to Δ_{15} AICc. Models were further examined for pretending variables (Anderson 2008, p.65) and potential outliers by examining residuals, leverage, and influence (Fox and Weisberg 2011). If no interactions were present in the confidence set, parameters were model averaged. Confidence sets with interactions were not model averaged, but interactions were plotted to illustrate the shape of the interaction. Parameter coefficients (log-odds) were plotted to estimate the effect size of each predictor. The log-odds were also converted into Cohen’s *d* for a standardized estimate of effect size (Borenstein et al. 2009). After the confidence set was generated, 2015 data were input into the model set to assess its predictive ability. Observed data in 2006-2013 could be used as a test set of data, using puffin data if the model included either no food parameters or euphausiids only, but models with other food parameters could not be predicted, owing to poor correlations between puffin and tern diet data (Table S1).

Although Burnham and Anderson (2002) caution strongly against trying many models relative to a small sample size, we put much *a priori* thought into model structure to minimize the chance of spurious results. Furthermore, the implications of the collapse of the MSI tern colony were grave for the conservation of Arctic Terns in the GOM; rather than risk the chance of a Type II error by keeping the
number of potential models low, we instead chose to create models from our large dataset to fully
investigate potential leads regarding the collapse of the MSI tern colony. To account for potential
prediction error, we performed a leave-one-out cross-validation on well-supported models to examine
potential prediction outliers.

Results

Variable selection

A list of variables was removed from consideration owing to redundancy between metrics, high
correlations, or lack of relevance (Table S4). June and July weather data were highly correlated, and
were thus not included together in models. A strong negative correlation was also discovered between
clutch size and predation (Table S5), which precluded the use of clutch size in the analyses. Moderate
correlation was also observed between good food and predation parameters, but was not strong enough to
preclude the usage of either; we do take these correlations into consideration when interpreting the results.

Nest analysis – proportion of successful nests

The final candidate set produced one model with 97% of the weight (Table 1). The 2002 data point had
high influence, owing to the high incidence of euphausiid mass feeding that year (>2 SD). However,
removal of 2002 from the dataset and re-analysis of the data with the same models still gave the top-
ranked model 88% of the weight (Table S6) and the slopes were similar (Table S7). Although high
incidence of euphausiids during a season is uncommon, it does occur occasionally, and we therefore kept
the 2002 data in the model. Cross-validation suggested that prediction error for this model was very low,
and all data points were consistent (Table S8), with low prediction error (Fig. S3).

Examination of the interaction between euphausiids and rain showed that rain was a moderating variable
between euphausiids and nest success (Fig. 2). Qualitative levels of each interaction were notated using
the mean +/- one standard deviation for each level (mean = moderate, -1 SD = low, +1 SD = high). Under
low rainfall, more euphausiids in the diet led to greater breeding success, but euphausiids had a negative
effect on breeding success at moderate or high levels of rain.

Owing to the high weight attributed to the top-ranked model, we extracted coefficients from only this
model (Fig. 3) instead of for a larger model set following Burnham and Anderson (2002) for models with
>90% model weight. Data from 2006-2013 (using puffin euphausiids data as a proxy) and 2015 were
input into the model to examine its predictive ability (Fig. S4).

Productivity analysis - number of chicks fledged

The final confidence set included four models, where the top-ranked model received 40% of the weight
(Table 2). Three models included interactions and the fourth included a quadratic term, so model
averaging was not appropriate. We instead included the effect sizes for terms in each model (Figs S5-
S12), plots of the interaction or quadratic term (Fig. S13-S16), and a comparison of model-predicted and
real values (Figs S17-S20); all models had complex food parameters, so 2006-2013 data could not be
predicted. The 2015 data were poorly predicted by three of the four models.

Diagnostics showed that 2000 was an outlier in three of the four top-ranked models. However, removal
of 2000 data made parameter estimates for the two-chick level unstable. All years were thus retained, but
results are interpreted qualitatively only and are not suitable for quantitative prediction. Given this issue
with outliers, prediction error was likely very high, and we did not perform cross-validation.

Discussion

The high rank of food, weather, and predation parameters indicates that all contribute to breeding success
on MSI. The presence of interactions supports the idea that relationships between indicator species and
their environment are not simply linear (Durant et al. 2009; Lepetz et al. 2009).

Food quality, rain, and their interactions

The interaction between euphausiids and rain during early chick rearing was highly ranked in both
analyses. We suggest that this interaction illustrates an effect of parental foraging behavior on chick survival. Chicks are unable to thermoregulate well during the first week of life and are brooded frequently (Klaassen 1994), yet parents delivering a high proportion of euphausiids must feed their chicks more frequently to sustain their chicks, leaving little time for brooding. In periods of good weather, leaving the chick alone for long periods will have little effect on chick survival; chicks are cryptic and will hide in vegetation beginning at a few days of age. As cold or rainy weather increases, however, chicks left alone at the nest are more susceptible to chilling and death by exposure (Langham 1968). On MSI, rain elicits a brooding response from adult terns, and rain was the only environmental variable of five that led terns to alter their time budgets to incorporate more brooding (Paquet 2001). Inclement weather also makes foraging more challenging for adults (Hawksley 1957; Langham 1968; Becker and Specht 1991), and can reduce their foraging efficiency. It is thus not food quality that is problematic for chicks receiving euphausiids in poor weather, but impossible demands on parental time budgets. It is possible that increased metabolic costs during rainy weather require more energy than euphausiids can provide (Dunn 1975; Becker and Specht 1991), but chicks at this stage of rearing have low energy demands (Klaassen et al. 1989). Arctic Terns are capable of raising multiple chicks on a primarily euphausiid diet, as was observed during 2002, when euphausiids represented 70% of the diet by mass. The assessment of food quality as a function of weather is therefore important to consider – although herring are considered the best available prey for seabirds in the GOM (Diamond and Devlin 2003), our results suggest that for terns, food quality becomes relevant only when foraging conditions are poor; euphausiids should not always be considered poor quality prey for Arctic Terns. An examination of this relationship in further detail would elucidate its mechanism, which is only speculated here.

The weak support for herring and other high quality food was unexpected. In the productivity analysis, although high quality food was part of the top-ranked model, the effect size of good food was small relative to weather and predation, indicating that food quality is important only when poor weather and predation are minimal. Furthermore, high quality food had no effect on nest success or on one-chick
nests, indicating that food quality will determine only how many additional chicks can be fledged. This is consistent with observations of tern productivity in the GOM, where first-hatched chicks are preferentially fed higher quality items (North 1994) and later-hatched chicks usually die of starvation (Hawksley 1957). Given that the top-ranked models in both analyses show a positive effect of euphausiids when weather is good, our results suggest that Arctic Terns on MSI do not always require prey with a high energy density. The moderate correlation between predation and good food metrics may mask the importance of good food, but even quantitative measures of diet were not well supported. High quality food may be especially important prior to breeding – in the nest analysis, although none of the seabird-derived “good food” metrics ranked highly, the availability of herring regionally (from the VPA) performed much better. This could indicate that food quality for adults – a variable not measured in these analyses – is a key factor in their breeding performance, and may be linked more strongly to reproductive metrics from earlier in the breeding season, such as clutch size or adult mass (Langham 1968; Evans and McNicholl 1972; Monaghan et al. 1992). We conclude from our results that food is a secondary factor to Arctic Tern breeding success, and was not the main cause of colony abandonment at MSI.

If herring availability is important to adult tern condition, future oceanographic changes could be a major cause for concern. Copepods make up the majority of the juvenile herring diet (Last 1989; Pedersen and Fossheim 2008), but increasing temperatures in the GOM could affect the timing of their emergence from winter diapause, and lead to trophic mismatches (Johnson et al. 2011). Predicting the effects of climate change on fish population dynamics is difficult, and cod provide a cautionary tale for fisheries (McQuinn 2009; Pershing et al. 2015); future quotas for the herring fishery in the GOM should be extremely cautious, in light of potential effects on seabirds in the GOM (Breton and Diamond 2014).

A variety of potential marine prey – rather than one essential prey species – is likely one of the most important factors to seabird success in the GOM.

Weather during the first week of chicks’ lives was included in each of our highest ranked models. Rain during chick rearing has increased at MSI (Fig. S21). This has major implications for young chicks, but
it is also a natural phenomenon to which terns can adapt. A higher frequency of storm events, as is
expected in climate change projections (Stocker et al. 2013), could leave terns with less resilience to
environmental stochasticity, but alone is unlikely to cause abandonment. Our results indicate that rain
can contribute significantly to chick mortality, can influence the relationship of food to nest success, and
can severely hinder the likelihood of successful two-chick nests; for ground nesting species, then, weather
is a critical consideration for breeding success.

Predation

Predation was also included in each of our highest ranked models. In the nest analysis, every 10%
increase in predation leads to a 4.09 odds increase of nest failure. Based on the model, exceeding ~25%
depredation at MSI leads to colony breeding failure under most scenarios, regardless of weather. This is
consistent with observations by Austin (1940) at large tern colonies in Cape Cod, and is likely related to a
loss of synchronized anti-predator response under chronic predation (Monaghan et al. 1989; Becker
1995). Furthermore, our results indicate that the collapse of breeding success at MSI can be attributed to
just the effects of gulls: during the failure years from 2006-2013, years of low rainfall and good food (for
alcids) were observed, yet predation consistently exceeded 50% in all years, well beyond the tolerable
threshold of 25%. The hypothesis that gull predation alone was responsible for the colony collapse was
confirmed following the resumption of lethal predator control on MSI in 2013 and 2014, which was
followed immediately by reduced predation, better attendance behaviour, and a successful breeding
season in 2014, the first since the collapse (L. Scopel and A. Diamond, unpublished data). We therefore
identify predation as the definitive cause of the collapse of the MSI tern colony, and reduction of
predation to pre-abandonment levels was the impetus for colony recovery at MSI. The initial increase in
predation at MSI in 2000 can be attributed to the cessation of lethal control that year, and is consistent
with studies following the cessation of lethal control at other sites (Côté and Sutherland 1997; Anderson
and Devlin 1999).
Although natural predators are rarely the sole cause of population declines in their prey (Burger and Gochfeld 1994; Côté and Sutherland 1997), the effects of gull predation are enhanced in the GOM.

Although terns naturally disperse from sites where predation is chronic, viable alternative sites no longer exist in this region owing to displacement from preferred nesting habitat by gulls (Nisbet et al. 2013).

Persistent tern colonies attract chronic predation (Burger 1982; Jackson and Jackson 1985), and thus face reduced breeding success in perpetuity. Furthermore, declines in the regional population of the Larus gulls are attributed to declining sources of anthropogenic food (Cotter et al. 2012; Nisbet et al. 2013).

Generalist predators may switch to seabird prey in the absence of preferred natural or anthropogenic prey (Regehr and Montevecchi 1997; Votier et al. 2004), which would further increase predation at existing colonies. In the GOM, the only effective way to reduce predation pressure is to perform selective lethal control of specialist individuals (Kress and Hall 2004). The success of lethal control in restoring breeding success to MSI is encouraging, but requires implementation indefinitely, and does not address the regional problem of gull overpopulation.

Increased predation and precipitation during early chick rearing represent crucial future issues for terns in the GOM. Our models indicate that MSI terns have reduced nesting success if predation and rain are high, and these terns cannot fledge more than one chick if moderate levels of either occur. Our models also indicate that food quality becomes an important consideration when weather during chick rearing is poor, meaning that breeding success of terns is increasingly dependent upon good food, good weather, and low predation just to fledge one chick. The higher predation under limited lethal control and higher precipitation in the past decade both leave smaller margins for the terns to succeed, leave little chance of rescue by way of high production during good years, and ultimately increase the likelihood of colony failures or declines. Extended periods of poor weather and high predation could further reduce the Arctic Tern metapopulation in the GOM.

These models suffer from small sample size, but for the purposes of investigating the collapse of the tern colony, we find these data to be sufficient. Further application of these models to other Arctic Tern
colonies in the GOM will improve their reliability at a broader spatial scale. For further discussion of the importance of lower-ranked interactions in this analysis, please see Appendix SB.\(^1\)

Arctic terns as bioindicators

Our results provide an important counterpoint to the use of seabirds as bioindicators of bottom-up ecosystem change. For terns in the GOM, where predation by gulls is prevalent, our ability to use tern breeding success as an indicator of bottom-up ecosystem change is called into question. MSI terns are affected much more strongly by top-down control and weather, which confounds their use as indicators of bottom-up change. The only species of 14 considered by Cury *et al.* (2011) that did not show a significant threshold response of breeding success to forage fish abundance was the Arctic Tern, consistent with our result that breeding success of Arctic Terns is determined by more than just food; the relationship of food to reproductive success is moderated by weather. We found no evidence to support the hypothesis that MSI’s tern colony collapsed because of a decline in herring availability.

Evidence of strong top-down control does not preclude bottom-up control, however, and predatory gulls are likely also affected by bottom-up forcing. Interactions between terns and gulls in this region are complex, and would not be represented adequately by a simple indicator metric. In spite of these complexities, we highlight the importance of considering both top-down and bottom-up forcing on a potential indicator species; a desire to ignore “extraneous” factors like predation in order to provide a cleaner indicator metric can misrepresent ecological relationships. For small, ground-nesting seabirds, we recommend that the importance of predation is given equal *a priori* consideration to the importance of food in the case of population or reproductive declines.

Acknowledgements

We thank M.J. Power for herring VPA data, and A.K. Bowser for prey conversion files. We also thank two anonymous reviewers for their helpful comments. Funding was provided by Vanier Canada Graduate Scholarships, Environment Canada and NB Wildlife Council.
References

variability in fatty acid signatures of marine fish and invertebrates on the Scotian Shelf, Georges
062.

Burger, J. 1982. The role of reproductive success in colony-site selection and abandonment in black

Seabirds on islands, threats, case studies and action plans. Edited by D.N. Nettleship, J. Burger, and

information-theoretic approach. Springer-Verlag, New York, NY.

Côté, I.M., and Sutherland, W.J. 1997. The effectiveness of removing predators to protect bird

Population status, distribution, and trends of gulls and kittiwakes breeding in eastern Canada, 1998-

Cury, P.M., Boyd, I.L., Bonhommeau, S., Anker-Nilssen, T., Crawford, R.J.M., Furness, R.W., Mills,
W.J. 2011. Global seabird response to forage fish depletion—one-third for the birds. Science,

Devlin, C.M. 2006. Birds crossing borders: a population study of Arctic terns (Sterna paradisaea). PhD
thesis, Department of Biology, University of New Brunswick, Fredericton, New Brunswick.

https://mc06.manuscriptcentral.com/cjz-pubs
Gaston, A.J., Bertram, D.F., Boyne, A.W., Chardine, J.W., Davoren, G., Diamond, A.W., Hedd, A.,
2009. Changes in Canadian seabird populations and ecology since 1970 in relation to changes in

doi:10.1126/science.1136495.

Syst. 13: 1–21.

Grémillet, D., and Charmantier, A. 2010. Shifts in phenotypic plasticity constrain the value of seabirds as

Guillemette, M., and Brousseau, P. 2001. Does culling predatory gulls enhance the productivity of

Hario, M. 1994. Reproductive performance of the nominate lesser black-backed gull under the pressure of

Jackson, J.A., and Jackson, B.J.S. 1985. Status, dispersion, and population changes of the least tern in

279. doi:10.3354/meps325267.

O’Brien, T.D., and Van Guelpen, L. 2011. Biodiversity and ecosystem function in the Gulf of
doi:10.1371/journal.pone.0016491.

Dalhousie University, Halifax, Nova Scotia.

MacKinnon, C.M., and Smith, A.D. 1985. A summary of historical information of the seabirds of

https://mc06.manuscriptcentral.com/cjz-pubs

Paquet, J. 2001. Time-budget flexibility of breeding Arctic Terns (*Sterna paradisaea*): an investigation of

Figure 1. Map of the five major Arctic Tern (*Sterna paradisaea*) colonies in the Gulf of Maine metapopulation. Colonies include Metinic Island, Maine (MI), Matinicus Rock, Maine (MR), Seal Island, Maine (SI), Petit Manan Island, Maine (PMI), and Machias Seal Island, New Brunswick (MSI).

Figure 2. Interaction plot of nest success as a function of euphausiid mass feeding$^{-1}$ in the Arctic Tern (*Sterna paradisaea*) chick diet and rain during the first week of a chick’s life. Data are normalized; 0 represents the mean. Qualitative rain categories designate mean (“Medium”) and +/- 1 SD (“High”/“Low”) values. Plots represent low (A), moderate (B), and high (C) predation, based on mean (B) +/- 1 SD (C,A). Dashed lines represent 95% confidence intervals.

Figure 3. Effect sizes for coefficients in the top ranked model from the analysis of nest success of Arctic Terns (*Sterna paradisaea*) at MSI – log odds (A) and Cohen’s d (B). Error bars represent 95% CIs.
Main text tables for:

Predation and food-weather interactions drive colony collapse in a managed metapopulation of Arctic Terns (*Sterna paradisaea*)

L. C. Scopel, *University of New Brunswick*, 10 Bailey Drive, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada, l scopel@unb.ca

A. W. Diamond, *University of New Brunswick*, 10 Bailey Drive, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada, diamond@unb.ca

Corresponding author:

Lauren C. Scopel

10 Bailey Drive

University of New Brunswick

Fredericton, New Brunswick E3B 5A3

Canada

l scopel@unb.ca

1-506-449-8044
Table 1. Final AICc output table for analysis of nest success of Arctic Terns (*Sterna paradisaea*); the confidence set is shaded, but results report up to $\Delta 15$.

<table>
<thead>
<tr>
<th>ID</th>
<th>k</th>
<th>AICc</th>
<th>ΔAICc</th>
<th>Weight</th>
<th>Log-Lkhd</th>
<th>R^2</th>
<th>Good food</th>
<th>Bad food</th>
<th>Weath. 1</th>
<th>Weath. 2</th>
<th>Pred.</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>79.71</td>
<td>0.00</td>
<td>0.970</td>
<td>-29.85</td>
<td>0.98</td>
<td>Euph feed$^{-1}$</td>
<td>Rain Wk1</td>
<td>Y</td>
<td>Euph-Rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>88.37</td>
<td>8.66</td>
<td>0.013</td>
<td>-34.18</td>
<td>0.95</td>
<td>Rain Wk1</td>
<td>Rain Wk2</td>
<td>Y</td>
<td>Pred-Rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>89.43</td>
<td>9.72</td>
<td>0.008</td>
<td>-30.31</td>
<td>0.98</td>
<td>Feed rate2</td>
<td>Wind Wk1</td>
<td>Rain Wk2</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>92.04</td>
<td>12.33</td>
<td>0.002</td>
<td>-31.62</td>
<td>0.97</td>
<td>VPA</td>
<td>Rain Wk1</td>
<td>Rain Wk2</td>
<td>Y</td>
<td>Pred-VPA</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>92.62</td>
<td>12.91</td>
<td>0.002</td>
<td>-36.31</td>
<td>0.93</td>
<td>VPA</td>
<td>Rain Jun.</td>
<td>Y</td>
<td>Pred-VPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>93.33</td>
<td>13.62</td>
<td>0.001</td>
<td>-36.66</td>
<td>0.93</td>
<td>Euph feed$^{-1}$</td>
<td>Wind Wk1</td>
<td>Y</td>
<td>Euph-Wind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>94.09</td>
<td>14.38</td>
<td>0.001</td>
<td>-37.04</td>
<td>0.93</td>
<td>Her. length</td>
<td>Bad food hr$^{-1}$</td>
<td>Rain Wk 2</td>
<td>Y</td>
<td>Pred-Rain</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>94.11</td>
<td>14.40</td>
<td>0.001</td>
<td>-37.05</td>
<td>0.93</td>
<td>Euph feed$^{-1}$</td>
<td>Rain Wk1</td>
<td>Y</td>
<td>Pred-Rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>94.42</td>
<td>14.71</td>
<td>0.001</td>
<td>-37.21</td>
<td>0.93</td>
<td>Bad food hr$^{-1}$</td>
<td>Rain Wk1</td>
<td>Y</td>
<td>Pred-Rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>94.45</td>
<td>14.74</td>
<td>0.001</td>
<td>-40.37</td>
<td>0.90</td>
<td>Rain Wk1</td>
<td>Y</td>
<td>Pred-Rain</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Column headings include ID# of the model, the number of parameters, model weight, log-likelihood, and representations of good food, bad food, weather, predation, and interactions between parameters. Parameters include feeding rate (feed rate), estimated number of herring recruits from the virtual population analysis (VPA), euphausiid mass (g) feeding$^{-1}$ (Euph feed$^{-1}$), mass of bad food hr$^{-1}$ (Bad food hr$^{-1}$), average wind speed during the first week of chick rearing (Wind Wk1), total rain during the first week of chick rearing (Rain Wk1), total rain in June (Rain June), total rain during the second week of chick rearing (Rain Wk2), and the proportion of eggs depredated (Y).
Table 2. Final AICc output table for analysis of productivity of Arctic Terns (*Sterna paradisaea*); the confidence set is shaded, but results report up to Δ15.

<table>
<thead>
<tr>
<th>ID</th>
<th>k</th>
<th>AICc</th>
<th>ΔAICc</th>
<th>Weight</th>
<th>Log-Lkhd</th>
<th>R²</th>
<th>Good food</th>
<th>Bad food</th>
<th>Weath. 1</th>
<th>Weath. 2</th>
<th>Pred.</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>-204.68</td>
<td>0.00</td>
<td>0.401</td>
<td>-41.66</td>
<td>0.97</td>
<td>Good Food hr⁻¹</td>
<td>Euph feed⁻¹</td>
<td>Rain Wk1</td>
<td>Y</td>
<td>Euph-Rain Wk1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>-203.98</td>
<td>0.70</td>
<td>0.282</td>
<td>-42.01</td>
<td>0.97</td>
<td>Euph feed⁻¹</td>
<td>Rain Wk1</td>
<td>Rain Wk2</td>
<td>Y</td>
<td>Euph-Rain Wk1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>-203.75</td>
<td>0.93</td>
<td>0.251</td>
<td>-42.13</td>
<td>0.97</td>
<td>Feed rate²</td>
<td>Wind Wk1</td>
<td>Rain Wk2</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>-200.02</td>
<td>4.66</td>
<td>0.039</td>
<td>-43.99</td>
<td>0.95</td>
<td>Euph feed⁻¹</td>
<td>Rain Wk1</td>
<td>Rain Wk2</td>
<td>Y</td>
<td>Pred-Rain Wk1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>-197.28</td>
<td>7.40</td>
<td>0.010</td>
<td>-45.36</td>
<td>0.95</td>
<td>VPA</td>
<td>Euph feed⁻¹</td>
<td>Rain Wk1</td>
<td>Y</td>
<td>Euph-Rain Wk1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>-196.94</td>
<td>7.74</td>
<td>0.008</td>
<td>-45.53</td>
<td>0.94</td>
<td>Feed rate²</td>
<td>Wind Wk1</td>
<td>Y</td>
<td>Pred-Wind Wk1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>-196.93</td>
<td>7.75</td>
<td>0.008</td>
<td>-45.53</td>
<td>0.94</td>
<td>VPA</td>
<td>Wind Wk1</td>
<td>Rain Wk2</td>
<td>Y</td>
<td>Pred-VPA</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>-190.22</td>
<td>14.47</td>
<td>0.000</td>
<td>-48.89</td>
<td>0.92</td>
<td>Bad food hr⁻¹</td>
<td>Rain Wk1</td>
<td>Rain Wk2</td>
<td>Y</td>
<td>Bad food-Rain Wk2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>-189.85</td>
<td>14.84</td>
<td>0.000</td>
<td>-49.08</td>
<td>0.92</td>
<td>VPA</td>
<td>Bad food hr⁻¹</td>
<td>Rain Wk2</td>
<td>Y</td>
<td>Pred-VPA</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>-189.76</td>
<td>14.92</td>
<td>0.000</td>
<td>-49.12</td>
<td>0.92</td>
<td>Feed rate</td>
<td>Rain Wk1</td>
<td>Rain Wk2</td>
<td>Y</td>
<td>Pred – Rain Wk1</td>
<td></td>
</tr>
</tbody>
</table>

Note: Column headings include ID# of the model, the number of parameters, model weight, log-likelihood, and representations of good food, bad food, weather, predation, and interactions between parameters. Parameters include mass (g) of good food hr⁻¹ (Good Food hr⁻¹), feeding rate (feed rate), estimated number of herring recruits from the virtual population analysis (VPA), euphausiid mass (g) feeding⁻¹ (Euph feed⁻¹), mass of bad food hr⁻¹ (Bad Food hr⁻¹), average wind speed during the first week of chick rearing (Wind Wk1), total rain during the first week of chick rearing (Rain Wk1), total rain during the second week of chick rearing (Rain Wk2), and the proportion of eggs depredated (Y).