Utilization of xylitol as a preventive substance in dentistry

José Roberto de Magalhães Bastos1*
Lucilene Sanches Cirilo da Cunha2*
Ricardo Henrique Alves da Silva3*
Fabíola Elias4*
Hilton José Gurgel Rodrigues5*

1PhD, Full Professor
2Specialist in Public Health Dentistry
3DDS
4Specialist in Public Health Dentistry and Specialist in Orthodontics
5Specialist in Public Health Dentistry

*São Paulo University

Received for publication: September 15, 2005
Accepted: November 05, 2005

Abstract
Dental caries is an infectious-contagious disease of multifactorial origin, which requires interference in one or more of its etiologic factors for prevention. Within this context, the utilization of xylitol is highlighted, which was initially studied as a sugar substitute because of its similarity as regards the sweetening power and later was also employed in other forms for caries prevention and control. The purpose of this study is to describe, by means of a review of the specialized literature, how xylitol can be used as an anticariogenic agent, demonstrating its properties and possible mechanisms of action in the prevention and control of dental caries. Analysis of many studies on xylitol revealed that it is available in many forms: chewing gums or tablets, mouthrinses, or even associated to toothpastes. Its anticariogenic properties are related to the reduction in plaque adhesion, remineralization of incipient carious lesions, and specific reduction of S. mutans.

Key Words:
dental caries, prevention, xylitol

Correspondence to:
José Roberto de Magalhães Bastos
Universidade de São Paulo -
Faculdade de Odontologia de Bauru
Departamento de Odontopediatria, Ortodontia e Saúde Coletiva
Av. Octávio Pinheiro Brisola, 9-75
Bauru - São Paulo - Brasil - 17012-901
Phone: (14) 3235-8256 - Fax: (14) 3223-4679
E-mail: zeromaba@fob.usp.br
Introduction
Dental caries is an infectious-contagious disease of multifactorial origin and requires simultaneous interaction of three factors for establishment: microorganisms, host and diet1,2. Prevention of this pathology requires interference on these etiologic factors by means of strengthening of the host, which occurs in the presence of fluorides; control of the microorganisms through professional prophylaxis and antimicrobial agents; and restriction of dietary carbohydrates, especially sugar.

Within this preventive context, the utilization of xylitol is highlighted, which is a polyalcohol known by organic chemistry since 1890. Xylitol may be found naturally in some fruits and vegetables and may also be industrially produced4. The dental studies concerning xylitol were initiated in 1969, aiming at a possible substitution of sucrose because of the similar sweetening power. Later it was also employed in other forms for prevention, allowing interference on the metabolism of cariogenic microorganisms and improving the protective mechanisms of the host against tooth decay5. Xylitol is currently available in many forms such as chewing gums6-10, toothpastes11-13, fluoridated mouthrinses14-15, milk16 and it may also be associated to the use of fluoride17-18.

The utilization of xylitol in chewing gums allows an increase in the salivary flow, yielding an increase in the buffering capacity of saliva and a larger and faster increase in the salivary pH, therefore making the de/remineralization process more favorable19. The studies on the literature display possible anticariogenic20 and cariostatic21 properties of xylitol, which render this sweetener greatly interesting and important to Preventive Dentistry. However, its utilization in public services is partially impaired by one of its disadvantages, namely the high cost22. Preventive methods such as reduction of dietary carbohydrates, use of fluorides, sealants demonstrated no significant difference between these two preventive methods23.

The utilization of xylitol was also investigated in toothpastes containing it and NaF/silica, which produced a significant increase in the anti-caries benefit when compared to a similar toothpaste without xylitol11. This can be attributed to the remineralization capacity of human enamel surfaces by means of toothpastes with fluoride and xylitol12, showing that it is an efficient association.

Utilization of xylitol in solutions associated or not to fluoride was also observed, and the results showed that xylitol isolatedly did not reduce the level of demineralization, yet such reduction was present when xylitol was associated to fluoride14. Therefore, mouthrinses containing xylitol seem not to have anticariogenic effects over the dental plaque25.

Further benefits were observed when xylitol was used in pills associated to fluoride and sorbitol, which yielded a reduction in the colonization of \textit{S. mutans}, leading to a lesser amount of plaque and less carious lesions in the deciduous dentition. A reduction in the amount of \textit{S. mutans} was also observed when xylitol pills were used in dummies26.

The utilization of substances to avoid dental plaque formation and adhesion to the dental structure is of great importance for the maintenance of oral health. Within this context, xylitol has been playing an important role because of the following properties: non-fermentability by the cariogenic bacteria, ability to stimulate certain natural defenses of human beings7, reduction in the amount of bacteria9 and their adherence27, which make it a cariostatic and anti-cariogenic agent9.

Some disadvantages are reported, such as the high cost28 and possible gastrointestinal alterations when consumed in high doses1.

The utilization of xylitol as a sugar substitute has been mainly performed in chewing gums, with better results when chewed between meals27 and no differences as to the total or partial substitution of sugar. The main advantages of the chewing gum include the great acceptability by children29,30, extended period of contact with the teeth and saliva2 and permanence below the critical pH for a very short period29.

The reduction in dental plaque was quantitatively demonstrated through the utilization of xylitol chewing gums6,27, which revealed a reduction of 40\%6, collaborating with the reduction in tooth decay8 and prevention of periodontal disease2. Further, there was remineralization of incipient carious lesions4,19,21.

Regarding the reduction in the levels of \textit{S. mutans}, some studies demonstrated a positive effect of xylitol4,27, differently
from another on which such reduction was not observed[41]. Some species of *S. mutans* may adapt themselves to xylitol; however, these are less pathogenic than those that metabolize the sucrose. The reduction in the amount of *S. mutans* and *Lactobacillus* occur either with the isolated utilization of xylitol[28] or in association with chlorhexidine[20]. The fluoride-xylitol complex demonstrated to be beneficial for caries prevention in the deciduous dentition, by means of the utilization of tablets with this complex in babies aged 8 to 16 months old, through the reduction in the amount of *S. mutans*[26,31].

Being fluoride an acknowledged relevant agent for caries prevention, several studies were conducted to compare it to the use of xylitol in toothpastes, which demonstrated the induction of cariostatic mechanisms[10] and provided an optimal concentration of available fluoride[32].

The three-year employment of a toothpaste containing fluoride and xylitol reduced the number of new restored surfaces, presenting to be better than the isolated use of fluoride[43].

When mouthrinses containing xylitol were used, a smaller reduction in salivary pH[1] was observed, however other studies demonstrated that xylitol was not able to reduce the level of demineralization[19] nor did it have any effects on the dental plaque[26].

In conclusion, xylitol can be presented in many forms such as chewing gums, tablets, mouthrinses, and associated to fluoride in toothpastes. Its anticariogenic power is due to the impairment of growth of cariogenic bacteria and consequent reduction in the acidity of plaque. Besides, it helps in the remineralization of initial carious lesions, is specific to *S. mutans*, well accepted by children and may be used with beneficial effects in all ages.

References