A rapid and sensitive IC-ICP-MS method for determining selenium speciation in natural waters

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>cjc-2017-0637.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>26-Mar-2018</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Donner, Mark; University of Alberta, Renewable Resources Siddique, Tariq; University of Alberta, Renewable Resources</td>
</tr>
<tr>
<td>Is the invited manuscript for consideration in a Special Issue?:</td>
<td>N/A</td>
</tr>
<tr>
<td>Keyword:</td>
<td>selenium, chemical speciation, water monitoring, ion chromatography</td>
</tr>
</tbody>
</table>
A rapid and sensitive IC-ICP-MS method for determining selenium speciation in natural waters

Mark W. Donner and Tariq Siddique*

Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada

*Corresponding author address: 348 F South Academic Building, University of Alberta, Edmonton, Alberta T6G 2G7, Canada. Phone: (780) 492 2899; Fax: (780) 492 4323; e-mail: tariq.siddique@ualberta.ca
Abstract

Selenium (Se) is an element monitored by water quality agencies world-wide. The challenge of assessing its presence in aquatic systems is its low concentrations (parts-per-trillion) and the need for determining its chemical speciation. A method was developed using an ion chromatograph (IC) paired with a quadrupole inductively coupled plasma mass spectrometer (ICP-MS) equipped with a hydrogen reaction cell to provide analysts with a rapid and sensitive method to measure Se speciation with suitable accuracy and precision. The Se species selenite (Se^{IV}) and selenate (Se^{VI}) were separated within a 5-min span using dilute nitric acid as a mobile phase in a step-wise gradient (50-400mM), and quantified using ^{80}Se isotope that yielded low limits of detection ($< 10 \text{ ng L}^{-1}$). Spectral interference from plasma generated diatomic argon ions ($^{40}\text{Ar}_2^+; m/z = 80$) on ^{80}Se was eliminated by hydrogen gas (H_2) in the reaction cell. Polyatomic $^{79}\text{Br}^1\text{H}^+ (m/z = 80)$ did not interfere with ^{80}Se for quantification of common aquatic Se species (Se^{VI} and Se^{IV}) due to different column retention times. Two organic species (methylselenocysteine and selenomethionine) commonly found in aquatic and terrestrial plant tissues were also tested to rule out possible chromatographic interference and explore the potential application to biological samples. Urban rain water and Canadian river water samples were analyzed for Se species to demonstrate the applicability of the method. Owing to its ability to rapidly determine Se species in water samples at environmentally relevant concentrations, the method may be useful for monitoring agencies to routinely measure Se species in freshwater aquatic systems.

Key Words:
Selenium
Chemical speciation
Water monitoring
Ion chromatography
1.0 Introduction

The chemistry of selenium (Se) in the environment has long captured the interest of researchers from a variety of disciplines. Given that it is an essential trace element for humans and animals\(^1\) and is also sometimes an environmental toxin,\(^2\) understanding the complex behavior of Se in environmental systems is of great importance. Depending on biogeochemical processes and redox conditions, Se can exist in a variety of oxidation states (-II, -I, 0, IV, VI) with greater mobility at higher redox potentials.\(^3\) Owing to its ability to bio-accumulate in the food chain, Se concentrations in water deemed harmful to aquatic life are low relative to other elements (e.g., Fe, Mo, Zn, Cu) essential to life.\(^2,4\) Surface water (oxic to suboxic environments) where Se concentrations exceed guideline values (typically ≥ 1 µg L\(^{-1}\)) are generally attributed to a direct geologic or anthropogenic Se source, with the resulting predominant forms being the oxyanions selenite (SeO\(_3\)\(^{2-}\) or Se\(^{IV}\)), and selenate (SeO\(_4\)\(^{2-}\) or Se\(^{VI}\)).\(^5,6\) Reports of other inorganic and organic forms, in addition to the ubiquitous Se\(^{IV}\) and Se\(^{VI}\), have been described in aquatic systems that are biologically productive or impacted by industrial effluents (e.g., natural organic matter containing Se, Se-NOM; selenocyanate, SeCN\(^-\)).\(^6,7\) Selenium species are also known to differ with respect to bioavailability.\(^8\) Therefore, the fundamental challenge to understand Se in the aquatic environment is the low concentration combined with the need to understand its chemical speciation.

Numerous methods have been developed to determine Se species,\(^9,10\) with the bulk of conventional methods utilizing the hydride forming ability of Se\(^{IV}\). Following the pioneering work of Cutter,\(^11,12\) a large portion of Se speciation analyses of water are based on a selective sequential hydride generation (SSHG) approach.\(^6\) That technique takes advantage of the fact that only Se\(^{IV}\) forms a hydride, therefore, samples can be analyzed directly for Se\(^{IV}\) and then
chemically altered through online or offline oxidation and reduction reactions to obtain SeVI and reduced Se species by difference.

The SSHG method is a first step towards the chemical speciation and has some advantages: i) it can be used to incorporate colloidal and particulate Se13 ii) it is effective for saline waters (e.g., sea water) to bypass chromatographic interferences and iii) when coupled with appropriate detection technique such as atomic fluorescence, it has excellent sensitivity, even at low concentrations (LOD typically < 10 ng L$^{-1}$). Modifications to this method have also been made to limit bias resulting from the decomposition of organo-Se molecules during heat-acid reflux, but there is still considerable potential for large errors to be made when determining speciation by difference.6 SSHG procedures also call for large quantities of sample with considerable time and effort to perform the necessary redox reactions, with each step and sample type requiring detailed quality control. Fundamentally, the greatest disadvantage of any version of the SSHG approach is the inability to identify species within the “reduced Se” (primarily organic) fraction.

Ion chromatography (IC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) is a powerful analytical tool that has been used successfully for identifying a wide variety of Se containing compounds based on their retention times.$^{15-17}$ For Se analyses, however, conventional quadrupole ICP-MS operation suffers from inadequate sensitivity for concentrations typical of natural waters. This is due to the high ionization potential of Se in the plasma as well as isobaric and polyatomic interferences.9,18 Selenium has six stable isotopes (74Se [0.87%], 76Se [9.02%], 77Se [0.58%], 78Se [23.52%], 80Se [49.82%], and 82Se [9.19%]), which adds complexity to the analysis.19 The greatest sensitivity is achieved by monitoring the most abundant isotope (80Se), however the use of argon (Ar) gas in ICP-MS operation results in the dimer 40Ar$^+_2$ (m/z=80) interference.9,20 Using a reaction gas such as hydrogen (H$_2$) or
methane (\(\text{CH}_4\)), eliminates the interference by \(^{40}\text{Ar}^+\) and greatly increases sensitivity by reliably quantifying \(^{80}\text{Se}\).\(^{20}\)

While using a chromatographic approach offers greater detail to identify the species that are present, methods for coupling these instruments and achieving the necessary detection limits (parts per trillion or lower) for natural waters are still limited in the literature and may not be practical for routine monitoring due to long run times. Adequate sensitivity is achievable with ICP-MS, but appropriate mobile and stationary phases must also be considered. To provide analysts with a rapid and sensitive method for Se speciation in freshwater, we tested the use of dilute nitric acid (\(\text{HNO}_3\)) as a mobile phase. This offers some advantages to other mobile phases with basic or near-neutral pH: i) it prevents precipitation of iron (Fe) and aluminum (Al) (hydr)-oxides in samples taken from acidic or anoxic waters,\(^{21}\) ii) eliminates the need for salt or organic solvent-based eluents that can also be undesirable for interfacing IC with ICP-MS, thus improving detection limits as well as reducing maintenance costs\(^{23}\) and iii) \(\text{HNO}_3\) is already commonly used for ICP-MS analyses and can be distilled and purified to the extent necessary to achieve the desired background concentrations (blank values).

2.0 Experimental

2.1 Chemicals and reagents

To prepare standard solutions for selenium speciation, Se compounds were purchased from Sigma-Aldrich and dissolved in high purity (18.2\(\Omega\) cm) water (Barnstead Nanopure, Thermo Scientific\(^{\text{TM}}\)). Individual stock solutions had concentrations of 2000 mg L\(^{-1}\) for sodium selenite (Se\(^{\text{IV}}\); 99%; Cat. #S3876) and sodium selenate decahydrate (Se\(^{\text{VI}}\); 99.999% - trace metal basis; Cat. #450294), while organic Se species were prepared with a concentration of 500 mg L\(^{-1}\) using...
seleno-DL-methionine (SeMet; ≥99%; Cat. #S3876) and Se-(methyl)selenocysteine hydrochloride (MeSeCys; ≥ 95%; Cat. #M6680). Working standards (20 to 400 ng L\(^{-1}\)) were prepared daily from the stock solutions by diluting with high purity water inside a HEPA filtered clean air cabinet. Mass calibration standard solutions for total Se analysis were prepared by diluting SPEX CertiPrep Instrument Calibration Standard 2 (100 mg Se L\(^{-1}\) stock) with high purity water and acidifying final calibration solutions (0.1 to 2 µg L\(^{-1}\)) to 1% HNO\(_3\). A multi-element Internal Standard 1 was also diluted from its original concentration (10 mg L\(^{-1}\)) to 2 µg L\(^{-1}\) with high purity water and acidified to 1% HNO\(_3\).

TraceMetal™ grade HNO\(_3\) purchased from Fisher Scientific (Cat # A509P212) was used to prepare the mobile phase and acidify solutions analyzed for total concentration of Se. Hydrochloric acid (HCl) used for preserving samples and determining blank values was either TraceSELECT® (Sigma-Aldrich, Cat. #72787) or Optima™ (Fisher Scientific, Cat. #A466-500) HCl.

2.2 Instrument set-up for Se speciation and total Se analysis

A high performance ion chromatograph (HPIC; Thermo Scientific™ Dionex ICS-5000+) equipped with a Dionex IonPac™ AS7 anion exchange column (4 mm ID x 250 mm length) and AG7 guard column (4 mm ID x 50 mm length) was used to separate different Se species. The system included a single gradient pump, temperature controlled oven module, degasser, and AS-AP auto-sampler equipped with a 25 µL sample loop. The mobile phase was prepared in a step-wise concentration gradient as follows: 0-2 min (50 mM HNO\(_3\)), 2-4 min (400 mM HNO\(_3\)) and 4-5 min (50 mM HNO\(_3\)). It’s important to note that the potential corrosion of metallic parts by a dilute HNO\(_3\) mobile phase is not problematic in this system due to the use of PEEK™
(polyetheretherketone) instead of steel, thus allowing for a ‘metal-free’ flow path. This IC system was connected to a single quadrupole ICP-MS (iCap Q, Thermo Scientific™) operated in CRC (chemical reaction cell) mode. After passing through the column, the mobile phase was introduced to the ICP-MS at a fixed flow rate (1.0 mL min\(^{-1}\)) through a MicroFlow PFA-LC zero dead volume nebulizer into a quartz cyclonic spray chamber cooled to ~3°C. Peak areas of Se species were integrated using Dionex Chromeleon® 7 software.

Preliminary work for the chromatographic conditions presented above is also described by Javed.24 Two important modifications were made to that method which are included here: i) the flow rate of the mobile phase was kept constant (1 mL min\(^{-1}\)) to keep the optimized aerosol size and introduction rate consistent with tuned parameters and ii) H\(_2\) gas was used as a reaction gas in place of He (collision gas) in the pressurized cell to enable the accurate quantification of \(^{80}\text{Se}\). The flow rate of H\(_2\) was adjusted until low background signals were achieved for \(^{80}\text{Se}\), without any substantial loss of sensitivity. The isotopes \(^{77}\text{Se}\) and \(^{78}\text{Se}\) were monitored during analysis to compare differences in the accuracy and precision, and also to assess the role of relevant polyatomic interferences, such as \(^{79}\text{Br}^+\text{H}^+\) (see Results and Discussion).

The same ICP-MS was used for total Se analyses, but in this case the instrument was equipped with a CETAC ASX-520 auto-sampler and PFA-ST MicroFlow Nebulizer. Total Se in water samples (described below) was determined under kinetic energy discrimination (KED) mode with He as a collision gas. Quantification was based on the average of 3 main runs with 25 sweeps using \(^{78}\text{Se}\). The internal standard solution was introduced continuously online through a PEEK™ T-mixing piece. Scandium (Sc), indium (In) and holmium (Ho) from the internal standard solution were monitored and used to account for any instrumental drift on the basis of interpolation. Corrections made by software to account instrument drift were minor, with no
substantial changes in the internal standard observed during analyses (~ ±10%). Gases (Ar, He,
H₂) used for (IC)-ICP-MS analysis were of ultra-high purity (Praxair, purity 5.0). A summary of
relevant operating information for both total Se and Se speciation is provided in Table 1.

2.3 Quality control and method validation

Method accuracy for Se speciation and total Se concentrations was evaluated by analyzing
certified standard reference material (SRM; NIST 1640a: Trace Elements in Natural Water; Se =
20.13 ± 0.17 µg L⁻¹), whereas precision was assessed by analyzing samples in triplicate. For
routine ICP-MS quality control, instrument blanks (1% HNO₃) and check standards were used.
Multiple blanks containing either high purity water only or a dilute mixture of HCl and high
purity water (~0.8% HCl) were also included to identify any possible contamination and evaluate
spectral interference related to the increased chloride concentration from HCl. To further study
any interconversion of Se species during separation in the IC, or potential chromatographic
interferences (e.g., competition from competing ions), an acidified river water sample was also
chosen and spiked with Se⁴⁺ and Se⁶⁺.

As an additional method for verification of Se⁴⁺ and Se⁶⁺, acidified blank (~0.8% HCl)
samples (n=3) were spiked with Se⁴⁺ and analyzed using both IC-ICP-MS and HG-AFS. Details
for HG-AFS analysis are provided in the supplementary information. Briefly, samples spiked at
200 ng Se⁴⁺ L⁻¹ were acidified with HCl to 3.6M, diluted (5 times dilution), and analyzed directly
with a PS Analytical 10.055 (Millennium Excalibur) HG-AFS system. During the on-line
chemical reduction with sodium borohydride, only Se⁴⁺ is capable of forming a gaseous hydride
and therefore any Se signal is the result of Se⁴⁺ in the sample.

2.4 Method application: River and rain water sampling
The method was applied to natural water samples collected from three different rivers, and one sample of urban rain water. The purpose was to demonstrate the applicability of the method on chemically diverse natural waters containing low concentrations of Se. The determined chemical speciation is compared with the total concentrations and with the results available in the literature where different Se speciation methods have been applied to similar water types (e.g., snow, rain, river water).

For river water, samples from the shore of the North Saskatchewan River in the city of Edmonton, (Alberta, Canada) were collected in June 2016. Four samples were syringe filtered into polypropylene (PP) centrifuge tubes (15 mL) on-site using 30 mL all plastic syringes (Thermo Scientific™, Cat. #S7510) and 0.22 \(\mu \)m polytetrafluoroethylene (PTFE) disk filters (Thermo Scientific™; 30mm; Cat. #033911E). Samples were analyzed on the same day; samples for chemical speciation of Se \((n=3)\) were analyzed directly (i.e., filtered only) without any further treatment, while the sample \((n=1)\) for total Se was acidified with HNO\(_3\) (1% v/v) before analysis. A water sample was also collected from the shore of Maligne River in Jasper National Park, Alberta, Canada and was immediately syringe filtered using 30 mL plastic syringes (see above) and 0.45 \(\mu \)m PTFE disk filters (Thermo Scientific™, 30mm; Cat. #03-391-1C) into 125 mL acid-cleaned fluorinated polyethylene (FLPE) bottle containing 1 mL of HCl as preservative. The sample was stored at ~4°C until analysis was performed. The Athabasca River in northern Alberta, Canada was also sampled in October 2015. Water sample collection and handling used the same materials and procedure as described above for Maligne River, but were collected from the bow of a small boat anchored in the middle of the river. This sample is unique in that it was collected relatively close to the large surface mines of the Athabasca bituminous (oil) sands.
Urban rain water was collected in an acid-cleaned 125 mL borosilicate glass bottle (Wheaton™; 219815) with Teflon™ lined lid during a rain event at the University of Alberta, Edmonton on June 30, 2016. The sample was immediately filtered (0.22 µm) using a 30 mL plastic syringe (see above) and PTFE disk filters into 3 separate vials for analysis on the same day (< 30 min from collection). Only a small portion of the original sample was saved for Se speciation analysis and total Se was not analyzed.

3.0 RESULTS AND DISCUSSION

3.1 Peak resolution of Se species and differences in isotopic sensitivity with corresponding detection limits

Inorganic Se species (SeIV and SeVI) maintained excellent peak shape and resolution at low concentrations when a standard solution containing inorganic Se species (200 ng L$^{-1}$) was injected into the IC-ICP-MS (Figure 1A). Similar to the behavior of arsenite (AsIII) in a method using a HNO$_3$ mobile phase and AS7 column for arsenic speciation, the low mobile phase pH and acid dissociation constant of SeIV ($pK_{a1}=2.46$) explains its quick movement through the column with little retention. Selenate required a stronger HNO$_3$ eluent concentration (400 mM) to elute in a suitable amount of time. An additional 60 s of run time using 50 mM HNO$_3$ mobile phase was added following the elution of SeVI to re-condition the column and prepare for the next sample. After adequate separation and sensitivity was achieved for the inorganic Se species, the method was thoroughly tested for potential interferences (see below). Because the predominant species in aquatic systems tend to be SeIV and SeVI, the method was optimized for those species. However, to evaluate its performance in samples that contain organo-Se species, two selenoamino acids (SeMet and MeSeCys) were also tested. This is important because SeIV is passing through the column with little interaction with the stationary phase (presumably in the
void volume) and an analytical artefact is plausible if there are other Se species which do not
interact with the stationary phase. With recent evidence of organo-Se species in ultra-trace
quantities in biologically productive waters, two selenoamino acids (SeMet and MeSeCys)
were also tested using the same instrumental conditions. Although effective for the oxyanions
SeIV and SeVI, the analysis of selenoamino acids by ion exchange chromatography is
significantly more challenging; this is in part due to the zwitterionic nature of amino acids. For
example, at the low pH (< 2) of mobile phase used here, SeMet would be present as positively
charged cation and may not be suitable for analysis with an anionic exchange column.
However, despite being developed as a strong anion exchange column for polyvalent species, the IonPac™ AG7 and AS7 are known for both cation and anion exchange capability due to a
sulfonic surface coating and an outer layer of submicron anion-exchange MicroBeads™ with
alkyl quaternary ammonium functional groups; this is in addition to other retention
mechanisms such as molecule and stationary phase polarity, as the stationary phase is
hydrophobic. With these processes in mind, simultaneous determination of cationic and anionic
Se species using this set-up was deemed possible.

The results showed that SeMet and MeSeCys had a relatively high affinity for the stationary
phase and eluted in a short time (<5 minutes) with consistent peak shapes and good separation
(Figure 1B), however baseline separation between SeVI and SeMet was not obtained. In an
attempt to gain additional resolution between SeVI and SeMet, the eluent strength was decreased
to 300 mM and then to 100 mM. These manipulations did not yield greater peak resolution and
instead showed increased retention times and produced an undesirable peak shape compared to
the desired Gaussian peak shape (data not shown). Analysis of calibration standards with
different concentrations yielded consistent but considerable differences in sensitivity for all
species among the three measured isotopes, with the most sensitive to least sensitive being $^{80}\text{Se} > ^{78}\text{Se} > ^{77}\text{Se}$ (see Figure 1 for example). The difference in signal intensity of ^{80}Se from ^{77}Se and ^{78}Se was approximately 2 and 5 times, respectively (Table 2). As mentioned above, this sensitivity was directly related to the natural abundance of each isotope. The limit of detection (LOD) and limit of quantification (LOQ) were also calculated based on 3 and 10 times the standard deviation of eight blanks ($n=8$), respectively. These values were assessed experimentally by analyzing a 20 ng L$^{-1}$ and a 50 ng L$^{-1}$ standard 5 times each. Overall, the accuracy and precision of the measured standards were representative of the calculated LOD/LOQs (Table 2). Between the three isotopes, ^{80}Se had the lowest overall LODs and produced excellent accuracy and precision at 20 and 50 ng L$^{-1}$ concentrations. Isotope ^{78}Se also produced good overall results and is beneficial to include in the Se analysis for critically evaluating the data for potential interferences (see below). Due to the relatively poor results of ^{77}Se, this isotope will not be discussed in detail, however it is still useful in the data evaluation stages to distinguish Se from interferences.

The importance of using a reaction cell gas (H$_2$) is further highlighted by an observed increase in sensitivity as compared to the previous method that utilized He collision cell performed on the same IC-ICP-MS. Using reaction gas and the method described here, the sensitivity was approximately 28,000 and 24,000 cps ppb$^{-1}$ for SeIV and SeVI, respectively. Using He as a collision gas (and ^{78}Se for quantification) the sensitivity was approximately 1400 and 800 cps ppb$^{-1}$ for SeIV and SeVI, respectively.

3.2 Bromine interference and influence of HCl preservation on Se species determination

Arguably one of the most critical challenges to overcome when using H$_2$ in a reaction cell of ICP-MS for Se measurements is the polyatomic interferences created by samples containing...
bromine (Br). Hydrogen gas reacts to form $^{79}\text{Br}^1\text{H}^+$ ($m/z =80$) and $^{81}\text{Br}^1\text{H}^+$ ($m/z =82$) and these polyatomic ions overlap with the commonly measured ^{80}Se and ^{82}Se isotopes. In this study, we observed the interference caused by $^{79}\text{Br}^1\text{H}^+$ on ^{80}Se, but since Br (presumably as ionic bromide; Br$^-$) was effectively separated from three of the species in question there was no influence on the results (Figure 2). SeMet quantified using ^{80}Se was an exception to this, as it was observed to elute at approximately the same time as Br$^-$; therefore, ^{78}Se must be used for accurate quantification of SeMet. If the extremely high sensitivity offered by ^{80}Se is critical for the application, the use of deuterium (D$_2$) in place of H$_2$ as the reaction gas has been successful in overcoming the Br interference and might be a suitable alternative in this method as well.

Silver cartridges are commonly used for removing unwanted Cl$^-$, Br$^-$ and I$^-$ from samples but should not be used in this particular scenario as it has been reported that these cartridges remove SeMet along with other halogen ions.26

The potential influence of HCl on this method was also evaluated for two main reasons: i) it has been described as a preservative (in addition to refrigerated storage) used to stabilize SeIV and SeVI in water samples33 and ii) it is known to contain trace amounts of Br. To test the potential influence from Br contamination, a solution of high purity water and HCl (TraceMetal™ grade) was analyzed (final HCl concentration ~0.8%). This concentration was chosen because it maintains a pH < 2 required for preserving a wide variety of samples and is also appropriate for reliable ICP-MS analysis. Even with the high purity acid, Br contamination was evident from Br$^-$ peaks (Figure 2A) and is enough to affect quantification of SeMet using ^{80}Se. The effect of HCl used to acidify water containing SeIV and SeVI speciation was assessed by adding the same proportion of HCl (~0.8%). The change in sample pH did not affect retention times of either species and Br$^-$ eluted after SeVI, without interfering with SeVI (Figure 2B). Based
on these results, it is confirmed that HCl does not impact the analysis of SeIV or SeVI and samples preserved with $\leq 0.8\%$ HCl can be analyzed reliably using this method for SeIV or SeVI determination.

3.3 Method validation

The accuracy of measurements was partially determined by measuring certified standard reference material NIST 1640a (Trace Elements in Natural Water; Se $= 20.13 \pm 0.17 \mu g L^{-1}$) because there are currently no certified standard reference water samples for Se species. The SRM was diluted 50 times prior to analysis to bring the concentration into the range of the calibration standards. It was found that all measurable Se was present as SeIV and the recovery for every measurement was within 10\% of the certified total Se value. An independent method check of triplicate samples containing 200 ng L$^{-1}$ of SeIV measured by IC-ICP-MS and HG-AFS also yielded no observable difference (Figure S1). To evaluate the recovery of spiked Se species from a natural water sample, an aliquot of the Athabasca River water (deemed to be the most chemically complex of the river samples) was spiked with 100 ng L$^{-1}$ of SeIV and SeVI. Full recovery ($> 96\%$) was obtained for both species and repeatability of triplicate measurements had $< 3\%$ RSD (Table 3). Accuracy of total Se measurements was assessed using NIST 1640a (diluted 50 times). Full details for all QA/QC are provided in Table 3.

3.4 Se speciation in natural waters

Water samples from three rivers and one rain event were used to evaluate the method. Figure 3 displays the Se speciation in those water samples, with each river having slightly different proportions of SeIV and SeVI relative to the total Se. Compared to the North Saskatchewan River (261 ng L$^{-1}$) and the Athabasca River (187 ng L$^{-1}$; Table 4), Maligne River contained the highest
The concentration of total Se (314 ng L\(^{-1}\)) and the most Se\(^{VI}\). This observation is most likely a reflection of the local geology as well as input from snow melt, which has been found to contain predominantly Se\(^{VI}\).\(^{34-36}\)

The sum of inorganic species (Se\(^{IV}\) and Se\(^{VI}\)) accounted for most of the Se dissolved in North Saskatchewan River water (77%) and the Maligne River (88%), but in the Athabasca River there was no detectable Se\(^{IV}\) and Se\(^{VI}\) was only 43% of the total Se (Table 4). The differences in proportion of inorganic Se could be related to the natural organic matter (NOM) content of the waters and the known ability of complex organic structures to incorporate Se.\(^6\)

Dominated by snow melt, the Maligne River likely contains low concentrations of NOM, whereas the Athabasca River is well known for its complex dissolved organic matter consisting of humic material as well as bitumen derived compounds from bituminous sand outcrops.\(^{37,38}\)

Rain water was selected for analysis using this method because concentrations are usually low and therefore requires the level of sensitivity demonstrated here. Moreover, because Se speciation in rain water has been documented using various analytical techniques, it offers some additional insight into performance relative to other methods using a similar matrix. Unlike snow, Se\(^{IV}\) is commonly the predominant oxidation state in rain water.\(^{11,34,35,39}\) The results for rain water from Edmonton (Table 4) yielded similar chemical speciation results as those obtained by others which also employed a chromatography based Se speciation approach.\(^{39}\) Rain water \((n=3)\) from Edmonton contained 72 ± 5 ng L\(^{-1}\) Se\(^{IV}\) and 24 ± 5 ng L\(^{-1}\) Se\(^{VI}\), while Seattle rain \((n=3)\) contained 59.4 ± 2.6 ng L\(^{-1}\) Se\(^{IV}\) and 16 ± 0.4 ng L\(^{-1}\) Se\(^{VI}\).\(^{39}\)

3.5 Method limitations
The method was found to be effective for water samples with a very simple matrix (low salinity and NOM concentrations), but its performance with more complex matrices was not critically evaluated. A comprehensive study is necessary to fully evaluate the effect of competing ions (e.g., sulfate) and any necessary sample clean-up steps. This would help expand its application toward samples with greater ionic strength, such as seawater or industrial effluents. There is also an inherent disadvantage associated with using a low pH mobile phase on water samples containing abundant colloidal (i.e., < 0.45µm) organic and mineral particles. A more representative determination of the chemical speciation of Se (or other elements) requires methods of collection and analyses, including selection of the mobile phase, to mimic as closely as possible the environmental conditions at the time of sampling. Mobile phases used in chromatography typically are not tuned for site-specific parameters (e.g., pH, ionic strength), so there are risks of potential changes to the colloids such as partial dissolution, desorption, or dissociation. Therefore, a combination of other techniques for Se speciation such as asymmetrical flow-field flow fractionation would be worth investigating. To this point, we offer an example from some preliminary work on Se speciation in surface water of a peatbog in Northern Saskatchewan, situated near a flooded uranium mine (Figure 4). The total concentration of Se was 140 ng L\(^{-1}\), with 40 ng L\(^{-1}\) Se\(^{VI}\) and no detectable Se\(^{IV}\). As in the case of the Athabasca River, the form(s) of the unidentified Se fraction in these waters remains unknown; however, given the complex chemistry and array of organic compounds present in peat bog water, it may be possible that a significant portion of the Se was incorporated into NOM.

4.0 CONCLUSIONS

The purpose of this study was to develop a method which can quickly analyze Se species in natural water samples with high sensitivity using a dilute HNO\(_3\) acid mobile phase. While
originally intended for Se$$ ^{IV} $$ and Se$$ ^{VI} $$, it was also found to be effective for at least two organic species and therefore may also have applications for studying biological (e.g. plant or animal tissue) samples. The use of an acidic mobile phase may also be useful for anoxic groundwater or sediment pore water samples that require acid preservation to prevent the precipitation of Fe (hydr)-oxides. When coupled with single quadrupole ICP-MS using hydrogen in the reaction cell the method has excellent sensitivity and allows for accurate and precise measurements below 50 ng Se L$$ ^{-1} $$. Given the simple mobile phase, low cost of consumables and rapid elution/detection of species of interest, this method will be a useful analytical option for monitoring agencies tasked with routinely determining Se speciation in freshwater environments.

Acknowledgments

We greatly acknowledge funding from the Land Reclamation International Graduate School, an NSERC CREATE program and Alberta Innovates – Energy and Environment Solutions and the Canadian Oil Sands Innovation Alliance for providing research funding and financial support to MD. We also gratefully acknowledge the funding from Canadian Foundation for Innovation for establishing metal speciation infrastructure in the Department of Renewable Resources (University of Alberta). Thank you to Professors Kurt Konhauser, Daniel Alessi and their student Konstantin Von Gunten (University of Alberta) for providing the peat bog water sample, as well as to Parks Canada for allowing sample collection in Jasper National Park (permit granted to W. Shotyk, JNP-2017-23596). We gratefully acknowledge technical advice and support from Thermo Fisher Scientific, with special thanks to Ed Kao and Mark Fiedler. We also thank Dr. Muhammad Babar Javed and Professor William Shotyk for helpful comments that improved the manuscript.
References

Tables and figures

Table 1. Instrumental parameters and conditions for IC-ICP-MS and ICP-MS operations

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Parameter</th>
<th>Optimized Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-ICP-MS</td>
<td>R.F. power (W)</td>
<td>1548</td>
</tr>
<tr>
<td></td>
<td>Ar flow rate (L min$^{-1}$)</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>H$_2$ flow rate (mL min$^{-1}$)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Dwell time (s)</td>
<td>0.1 (Se)</td>
</tr>
<tr>
<td></td>
<td>Eluent flow rate (mL min$^{-1}$)</td>
<td>1.0</td>
</tr>
<tr>
<td>IC-ICP-MS</td>
<td>Mobile phase A</td>
<td>50 mM HNO$_3$</td>
</tr>
<tr>
<td></td>
<td>Mobile phase B</td>
<td>400 mM HNO$_3$</td>
</tr>
<tr>
<td></td>
<td>Gradient program</td>
<td>0-2 min 100% A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-4 min 100% B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-5 min 100% A</td>
</tr>
<tr>
<td></td>
<td>Wash volume</td>
<td>250 (µL)</td>
</tr>
<tr>
<td></td>
<td>Column temperature</td>
<td>30 (°C)</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Skimmer cone</td>
<td>Ni</td>
</tr>
<tr>
<td></td>
<td>Sample cone</td>
<td>Ni/Cu</td>
</tr>
<tr>
<td></td>
<td>Dwell time (s)</td>
<td>0.2 (Se)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02 (Sc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01 (In)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01 (Ho)</td>
</tr>
<tr>
<td></td>
<td>Auxiliary gas flow rate</td>
<td>0.8 (L min$^{-1}$)</td>
</tr>
<tr>
<td></td>
<td>He flow rate</td>
<td>5.0 (mL min$^{-1}$)</td>
</tr>
</tbody>
</table>
Table 2. Comparison of method accuracy, precision and sensitivity between isotopes for each of the studied species. Standard deviations for measurements are shown in parentheses. Bold values indicate analyses with > 20% RSD.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Speciation</th>
<th>Calibration Linear Coefficient</th>
<th>LOD (ng L^{-1})</th>
<th>LOQ (ng L^{-1})</th>
<th>Recovery of 20 ng L^{-1} standard (n=5)</th>
<th>Recovery of 50 ng L^{-1} standard (n=5)</th>
<th>Instrument sensitivity (cts) at 200 ng L^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>77Se</td>
<td>Se^{IV}</td>
<td>0.961</td>
<td>24</td>
<td>110</td>
<td>11 (±8)</td>
<td>33 (±12)</td>
<td>1056</td>
</tr>
<tr>
<td></td>
<td>MetSeCys</td>
<td>0.967</td>
<td>41</td>
<td>100</td>
<td>2 (±5)</td>
<td>11 (±16)</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>Se^{VI}</td>
<td>0.984</td>
<td>10</td>
<td>149</td>
<td>ND</td>
<td>28 (±12)</td>
<td>620</td>
</tr>
<tr>
<td></td>
<td>SeMet</td>
<td>0.970</td>
<td>38</td>
<td>147</td>
<td>6 (±8)</td>
<td>20 (±16)</td>
<td>498</td>
</tr>
<tr>
<td>78Se</td>
<td>Se^{IV}</td>
<td>1.000</td>
<td>9</td>
<td>28</td>
<td>18 (±3)</td>
<td>52 (±7)</td>
<td>2462</td>
</tr>
<tr>
<td></td>
<td>MetSeCys</td>
<td>0.996</td>
<td>20</td>
<td>64</td>
<td>6 (±4)</td>
<td>39 (±6)</td>
<td>2697</td>
</tr>
<tr>
<td></td>
<td>Se^{VI}</td>
<td>0.999</td>
<td>3</td>
<td>23</td>
<td>18 (±2)</td>
<td>54 (±5)</td>
<td>2192</td>
</tr>
<tr>
<td></td>
<td>SeMet</td>
<td>0.996</td>
<td>12</td>
<td>36</td>
<td>20 (±8)</td>
<td>44 (±3)</td>
<td>1586</td>
</tr>
<tr>
<td>80Se</td>
<td>Se^{IV}</td>
<td>0.997</td>
<td>4</td>
<td>14</td>
<td>21 (±3)</td>
<td>49 (±7)</td>
<td>5354</td>
</tr>
<tr>
<td></td>
<td>MetSeCys</td>
<td>0.999</td>
<td>5</td>
<td>12</td>
<td>21 (±3)</td>
<td>51 (±2)</td>
<td>5868</td>
</tr>
<tr>
<td></td>
<td>Se^{VI}</td>
<td>0.999</td>
<td>4</td>
<td>15</td>
<td>20 (±3)</td>
<td>49 (±4)</td>
<td>4673</td>
</tr>
<tr>
<td></td>
<td>SeMet</td>
<td>0.998</td>
<td>9</td>
<td>38</td>
<td>18 (±4)</td>
<td>46 (±4)</td>
<td>3154</td>
</tr>
</tbody>
</table>
Table 3. Method validation using standard reference water and spiked river water. Results are based on quantification of 80Se. Athabasca River water was spiked with SeIV and SeVI.

<table>
<thead>
<tr>
<th>Water Type</th>
<th>Analysis</th>
<th>Number of measurements (n)</th>
<th>Certified or expected value (µg L$^{-1}$)</th>
<th>Measured value</th>
<th>Recovery (%)</th>
<th>Relative standard deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST 1640a*</td>
<td>Speciation</td>
<td>4</td>
<td>20.13 (±0.17)</td>
<td>20.35</td>
<td>101</td>
<td>5.7</td>
</tr>
<tr>
<td>Se(IV) spike**</td>
<td>Speciation</td>
<td>3</td>
<td>0.100</td>
<td>0.099</td>
<td>99</td>
<td>2.5</td>
</tr>
<tr>
<td>Se(VI) spike**</td>
<td>Speciation</td>
<td>3</td>
<td>0.177</td>
<td>0.170</td>
<td>96</td>
<td>2.6</td>
</tr>
<tr>
<td>NIST 1640a</td>
<td>Total</td>
<td>1</td>
<td>20.13 (±0.17)</td>
<td>20.20</td>
<td>100</td>
<td>NA</td>
</tr>
</tbody>
</table>

* NIST 1640a is used as an indicator of method accuracy for speciation by comparing sum of species with certified total concentration. ** Spiked solutions diluted the original sample by 5%.
Table 4. Total Se and its chemical species in natural water samples. Results for chemical speciation were quantified using 80Se and total Se analysis was 78Se.

<table>
<thead>
<tr>
<th>Water Type</th>
<th>GPS Location</th>
<th>Sample number (n)</th>
<th>Se^{IV} (ng L$^{-1}$)</th>
<th>SeMetCys (ng L$^{-1}$)</th>
<th>Se^{VI} (ng L$^{-1}$)</th>
<th>SeMet (ng L$^{-1}$)</th>
<th>Total Se (ng L$^{-1}$)</th>
<th>Sum of species relative to total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maligne River</td>
<td>52.921591 -118.016796</td>
<td>1</td>
<td>24</td>
<td>ND</td>
<td>252</td>
<td>ND</td>
<td>314</td>
<td>88</td>
</tr>
<tr>
<td>Athabasca River</td>
<td>56.8971667 -111.419116</td>
<td>1</td>
<td><LOD</td>
<td>ND</td>
<td>77</td>
<td>ND</td>
<td>187</td>
<td>43</td>
</tr>
<tr>
<td>North Sask. River</td>
<td>53.529857 -113.517937</td>
<td>3</td>
<td>45 (±6)</td>
<td>ND</td>
<td>155 (±55)</td>
<td>ND</td>
<td>261</td>
<td>77</td>
</tr>
<tr>
<td>Edmonton Rain</td>
<td>53.526103 -113.523896</td>
<td>3</td>
<td>72 (±5)</td>
<td>ND</td>
<td>24 (±5)</td>
<td>ND</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

ND: not detected; NA: not available
Figure 1. Peak resolution of Se species and the sensitivity difference of measured isotopes. Chromatogram A represents a standard solution containing 200 ng L\(^{-1}\) each of Se\(^{IV}\) and Se\(^{VI}\); Chromatogram B represents a standard solution containing 200 ng L\(^{-1}\) of each Se species. Both standards were prepared using high purity water without any acidification of solutions. Chromatography method uses a Dionex IonPac™ AS7 anion exchange column (4 mm ID, 250 mm length, 10µm particles size), AG7 guard column (4 mm ID x 50 mm length) at 30ºC, with 1 mL min\(^{-1}\) flow rate and 25µL sample injection.

Figure 2. The potential influence of bromine (Br) and HCl on Se quantification. Chromatogram A represents a solution of high purity water and HCl (acidified to ~0.8%). Two isotopes of Br were monitored to confirm that Br (presumably as ionic Br\(^{-}\)) was present in HCl, and due to H\(_2\) reaction with \(^{79}\)Br, the resulting \(^{79}\)Br\(^{1}\)H\(^{+}\) is responsible for the observed artefact of \(^{80}\)Se. Chromatogram B represents a standard solution (200 ng L\(^{-1}\) each of Se\(^{IV}\) and Se\(^{VI}\)) prepared using high purity water and acidified with HCl. The results indicate that the Br\(^{-}\) peak does not interfere with Se\(^{VI}\) and the acidification of the solution has no influence on Se\(^{IV}\) and Se\(^{VI}\) retention times.

Figure 3. General depiction of Se speciation in river and rain water samples obtained using the developed method. Chromatograms represent (A) Athabasca River, (B) North Saskatchewan River, (C) Maligne River and (D) urban rain water. A false Se peak was expected in chromatograms A and C due to preservation with HCl, but trace Br was still detected in un-acidified samples (B, D). See Table 4 for the corresponding concentrations.

Figure 4. Selenium speciation of chemically complex peatbog surface water. A signal response from all three Se isotopes appear at 300s, which suggests that it is Se being detected, but \(^{80}\)Se signal had the lowest response and therefore it’s likely that a different spectral interference is at play here. A second Br peak was also observed (~225s), possibly indicating the presence of another form or column artifact due to the very high concentration of Br\(^{-}\).
Figure 1.0
Figure 2.0
Figure 3.0
Figure 4.0