Diet and feeding observations from an unusual beluga harvest in 2014 in Ulukhaktok, Northwest Territories, Canada

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Arctic Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>AS-2017-0046.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Communication</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>24-Nov-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Loseto, Lisa; Fisheries and Oceans Canada Central and Arctic Region, Arctic Aquatic Research Division Brewster, Jasmine; Fisheries and Oceans Canada Ostertag, Sonja; Fisheries and Oceans Canada Central and Arctic Region, Freshwater Institute Snow, Kathleen; Fisheries and Oceans Canada MacPhee, Shannon; Fisheries and Oceans Canada Central and Arctic Region McNicholl, Darcy; Fisheries and Oceans Canada Central and Arctic Region Choy, Emily; Fisheries and Oceans Canada Central and Arctic Region Giraldo, Carolina; Ifremer, HMMN Hornby, Claire; Fisheries and Oceans Canada Central and Arctic Region</td>
</tr>
<tr>
<td>Keyword:</td>
<td>sandlance, Traditional and local knowledge, beluga diet, stomach contents</td>
</tr>
<tr>
<td>Is the invited manuscript for consideration in a Special Issue?:</td>
<td>Beluga Whale Special Issue</td>
</tr>
</tbody>
</table>
Diet and feeding observations from an unusual beluga harvest in 2014 in Ulukhaktok, Northwest Territories, Canada

*1,2Lisa L. Loseto, 3Jasmine D. Brewster, 1Sonja K. Ostertag, 3Kathleen Snow, 1Shannon A. MacPhee, 1Darcy G. McNicholl, 2Emily S. Choy, 4Carolina Giraldo, 1Claire A. Hornby

1Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg Manitoba, Canada, R3T 2N6

2Department of Biological Sciences, University of Manitoba, 500 University Crescent, Winnipeg Manitoba, Canada R3T 2N2

3Fisheries and Oceans Canada, PO Box 1871, Inuvik Northwest Territories, Canada X0E 0T0

4Ifremer, HMMN, Centre Manche - Mer du Nord, BP 669, F-62 321 Boulogne sur Mer, France

*To whom correspondence should be addressed, lisa.loseto@dfo-mpo.gc.ca

Mailing Address: Freshwater Institute/Fisheries and Oceans Canada, 501 University Crescent, Winnipeg Manitoba, Canada R3T 2N6

Phone: 204 983 5135

Fax: 204 984 2403
ABSTRACT

The Eastern Beaufort Sea (EBS) beluga (*Delphinapterus leucas*) population are an important traditional food for the Inuit of the Inuvialuit Settlement Region, Northwest Territories (NT) Canada. In 2014, over 30 beluga whales were harvested at Ulukhaktok, NT, the first occurrence for a large harvest in the area. Unlike observations from the established beluga harvest monitoring in the Mackenzie Estuary, these belugas had numerous prey and prey items in their stomachs. Our study objectives were to combine traditional and local knowledge (TLK) from beluga hunters with the analysis of dissected stomachs to identify EBS beluga diet, feeding behaviour, as well as gain insights into potential drivers of the event. TLK holders witnessed foraging behaviors such as herding schools of fish. Stomach dissections revealed Sandlance (*Ammodytes sp.*) to be the predominant prey species, comprising 90% of identified otoliths, occurring in 92% of stomachs. The low presence of Arctic Cod (*Boreogadus saida*) otoliths, a preferred prey, raised questions about availability/accessibility and if alternative prey can sustain beluga energetic needs. Based on interviews of TLK holders, avoidance of noise due to human activity, killer whale presence, and shifts in prey were factors that may have led to the increased beluga sightings near Ulukhaktok NT.
KEYWORDS

beluga diet, stomach contents, traditional and local knowledge, Sandlance,
INTRODUCTION

Eastern Beaufort Sea (EBS) beluga whales (*Delphinapterus leucas*) are an important part of a traditional subsistence harvest by the Inupiat in Alaska and the Inuvialuit of the western Canadian Arctic (Harwood et al., 2002, Huntington et al., 1999, McGhee, 1988). Beluga harvest monitoring programs have occurred at key harvest locations in the Mackenzie Estuary for 30+ years, and more recently in Darnley Bay (beginning in 1989) (Harwood et al., 2015b, Harwood et al., 2002). Despite access to beluga carcasses and stomachs from harvest-based monitoring, whales rarely contain stomach contents (Harwood et al., 2002). As with all cetaceans, observing foraging behaviour and defining diet is challenged by access to observations, fecal and stomach samples. To compound this, the Mackenzie Estuary, where the EBS beluga aggregate and are harvested, is turbid, preventing visual observations of belugas below the water surface. As such, summer diet of EBS beluga has been examined and inferred with the use of biomarkers such as fatty acids and stable isotopes (Loseto et al., 2009) and hypothesized based on habitat use derived from telemetry (Hauser et al., 2015, Loseto et al., 2008).

For the first time on record, large numbers of beluga whales were observed near the communities of Sachs Harbour and Ulukhaktok, NT, Canada, throughout July and August 2014. Over 30 whales were landed with 28 whales sampled from Ulukhakok (n = 26) and Sachs Harbour (n = 2). Prior to this event, only opportunistic subsistence harvests have occurred in the vicinity of these communities, with just 7 whales landed from 2000–2012 (FJMC 2013). The EBS beluga visit offshore waters following their summer aggregation period in the Mackenzie Estuary (Richard et al., 2001). Beluga behaviour in Beaufort offshore waters, observed from aerial surveys, and inferred from telemetry tracks and habitat models, suggests that feeding is a
key activity during this time, after whales have left the Mackenzie Estuary (Hornby et al., 2017, Loseto et al., 2006b, Norton and Harwood, 1985, Richard et al., 2001).

Whales harvested in the clear water areas near Ulukhaktok were observed to be feeding and stomachs from harvested whales were full of prey and prey items. Thus, the objective of our study was to take advantage of this rare opportunity and use a two-pronged approach to characterize beluga diet by recording traditional and local knowledge (TLK) about feeding behaviour and diet, and analyzing stomach contents from harvested whales. Together TLK and stomach content analyses are used to explore potential drivers for the rare event.

METHODS

Study area

Beluga whales are traditionally harvested in the Mackenzie Estuary by community members from Aklavik, Inuvik and Tuktoyaktuk, and in Darnley Bay by community members of Paulatuk, in the Inuvialuit Settlement Region (ISR), Canada (Figure 1). However, in 2014, beluga whales were harvested outside of these common hunting areas near the communities of Ulukhaktok (n = 26) and Sachs Harbour (n = 2). In efforts to better understand this unusual occurrence, morphometric data and tissue samples were collected at both locations, and TLK was collected at Ulukhaktok. Significant effort was made to record diet related information, including both stomach content collections and observations of beluga feeding.

Sample collection and analysis

Samples were collected between July 1st and August 15th 2014, by harvesters, a DFO representative (who also conducted TLK interviews) and volunteer beluga harvest helper. Measurements collected included length, girth, blubber thickness, gender and colour (Harwood...
et al., 2002). Tissue collections included skin, blubber, muscle, jaws and stomachs/stomach contents. Note there was variability in stomach collections; stomach were either collected whole or partially (more than one stomach compartment) and frozen, or only the contents were collected and frozen. Once belugas were measured and sampled, all tissues were frozen on site in a portable freezer at -20°C and shipped to the Freshwater Institute (Winnipeg, MB, Canada) for analysis. Ages were determined from a thin section of a tooth by counting growth layer groups (GLG) in the dentine (Stewart et al., 2006). Sex was evaluated both on site as well as with genetic molecular analysis of blubber samples (Shaw et al., 2003). Frozen stomachs and stomach contents were thawed prior to dissection and prey identification. In total, twelve stomachs were examined for contents, including whole and partial stomachs. Stomach contents were processed using mesh sieves (500µm to 1mm) to remove otoliths and other vertebrate or invertebrate structures. Whole prey or prey structures (e.g., squid beaks, otoliths) were separated for identification to the lowest possible taxonomic level, and otoliths were used to identify fish taxa consumed and the age of the individuals. Otoliths obtained from beluga stomachs were examined whole, submerged in water with the sulcus side facing downward. Annuli representing each year of growth were counted under reflected light (Robards et al., 2002, Winters, 1981). Although an individual fish contains a pair of otoliths, each otolith found in the stomachs was treated as a distinct individual. The percent frequency of occurrence (%FO) was calculated by the number of stomachs containing one prey type divided by the total number of stomachs.

Traditional and local knowledge interviews

Hunters’ observations about beluga whales were recorded in Ulukhaktok NT, between August 7th and August 11th, 2014; therefore, observations about beluga whales harvested or
observed between August 12th and 25th were not recorded. Interviews began with background questions on the residence of the participants and their experience harvesting and preparing belugas. Participants were asked to mark the location of beluga observation and harvest on a map and complete a table about whale observations that included questions about feeding behaviour. Beluga sightings were possible at all times of day/night due to 24h daylight between mid-May to the end of July; the length of day shortened in early August, with twilight (dawn and dusk) lasting approx. 5h by mid-August (Ulukhaktok, Northwest Territories, Canada — Sunrise, Sunset, and Daylength). Interview participants were asked to describe the behaviour of the whales before they were being hunted; however, as the participants were actively hunting and travelling by boat at the time of the observation, the animal behaviour may have been affected by the presence of the hunters. Interview responses were recorded in a notebook and were verified by participants for accuracy. Seven of the eight participants agreed to be named and the eighth was unable to provide consent due to health issues and remains anonymous.

The Olokhaktomiut Hunters and Trappers Committee (HTC) identified the interviewees (Table S1). All interview participants had resided in Ulukhaktok for a minimum of 25 years and maximum of 60 years; beluga harvesting experience varied for the participants but all interviewees had beluga hunting experience (S1 and Collings et al., this Issue). One hunter participated in a cross-cultural knowledge exchange program on how to hunt and prepare whale and Arctic char (Salvelinus alpinus) and another hunter learned to hunt and prepare beluga from a harvester in Tuktoyaktuk. Hunters provided Traditional Knowledge (TK) and/or local knowledge, depending on their harvesting experience. We use the Inuvialuit definition of TLK as “the knowledge gained by Inuvialuit individuals through traditional learning patterns (stories/songs), and through living on and using the land.” (Inuvik Community Corporation et al.,...
Local knowledge refers to informal knowledge that is personal and possibly expert (Raymond et al., 2010). Given that the interviewees had varying levels of beluga harvesting experience, we define the knowledge shared in interviews as Traditional or Local Knowledge (TLK).

RESULTS AND DISCUSSION

Beluga demographics

Twenty-six whales were opportunistically sampled and measured from July 13 to August 25, 2014 near Ulukhaktok NT. Nearly 30% of the whales were grey (including dark grey) with the remaining white or white with yellow. Males typically represent 95% of landed whales from harvests near other ISR communities (Harwood et al., 2015b), but the sex ratio from the 2014 Ulukhaktok harvest was 1:1. Estimated ages ranged from 5 to 56 years and averaged 27 years; where males were slightly younger (21.6 ± 16) than females (28.3 ±16.1). Similarly, whales landed in the Mackenzie Estuary also have sex-related differences in age (Harwood et al., 2015b). Beluga length ranged from 107cm to 500cm, and averaged 363cm (+/- 71cm) with little difference among sexes. The total length range was comparable to whales landed in the Mackenzie Estuary and Darnley Bay; however, average length of males landed at Ulukhaktok was smaller (average 420cm Mackenzie Estuary males, Harwood et al. 2015).

Blubber thickness in 2014 averaged 4.9cm (+/-2.7), lower than whales harvested at other locations from 1999–2007 (>7.3cm (Harwood et al., 2015a). In a recent study, EBS beluga from 2011 to 2014 revealed the lowest body condition index (based on blubber thickness) occurred in 2014, and was thought to be due to lower abundance of Arctic cod (*Boreogadus saida*) (Choy et al., 2017). The thinner blubber measurements may support the hypothesis that whales harvested

https://mc06.manuscriptcentral.com/asopen-pubs
near Ulukhaktok were expending more energy searching for alternative food sources in the absence of their preferred prey, Arctic cod.

Differences in length and sex of belugas harvested in Ulukhaktok relative to the Mackenzie Estuary may reflect sexual segregation of habitat use of their vast summering region (Loseto et al., 2006a), and/or may reflect current harvest practices (Waugh et al., Collings et al., this issue). For example, community hunting bylaws provide guidance to avoid hunting females due to calving activity in the Mackenzie Estuary, and no such bylaws exist for Ulukhaktok (FJMC 2013).

Beluga diet

Characterizing the diet of EBS beluga defines the connectivity with the supporting ecosystem components (i.e. lower trophic levels, prey) and has been the focus of many studies (e.g. Hauser et al., 2015, Hornby et al., 2017, Loseto et al., 2009). Harwood et al. (2015) examined 634 beluga stomachs and found 94.5% and 86.5% from the Mackenzie Estuary and Darnley Bay, respectively, were empty. It is important to note that the beluga habitat use of the Mackenzie Estuary, is unique, there they aggregate by the 1000’s for reasons not entirely understood, hypotheses include moulting, refuge, calving, feeding among others (Finley, 1982, St. Aubin et al., 1990). Once they leave the estuary they can travel extensive areas including areas as far north as Viscount Melville Sound where deep dives have been measured and hypothesized to be feeding episodes (Richard et al., 2001). The irregular or non-existent harvests in these regions have limited the ability to investigate stomach contents outside of the estuary. During their spring migration from the Bering Sea, Alaskan harvests from 1983 to 2003 enabled the collection of stomach contents from 62 EBS whales. The predominant fish species identified
was Arctic cod (82%) and other fishes included sculpins (Cottidae spp.), Saffron Cod (*Eleginus gracilis*), Walleye Pollock (*Theragra chalcogramma*) and Pacific Sandlance (*Ammodytes hexapterus*). Most stomachs (92%) also contained invertebrates, primarily shrimp and cephalopods (Quakenbush et al., 2015).

In this study, both mature (>10 GLG) (Robeck et al., 2005) and subadults and neonates whales had full or partially full stomachs. It should be noted that some harvester sampling data sheets were returned with incomplete or insufficient comments regarding beluga stomach contents. For example, if no comments were made under the ‘stomach contents’ section, we interpreted this as the stomach had either not been checked or sampled. In one particular case, a female whale (ULU 14 19) was observed to have an empty stomach but a full mouth of food (Figure 2). Of the 26 whales sampled in 2014, seven stomachs contained partially digested fish and hard parts, the remainder contained only hard parts (i.e. invertebrate structures, otoliths (Table 1). Sandlance otoliths had a 92% FO and whereby > 82.7% of all otoliths aged were between ages 1+ and 3+, while the maximum observed age was 6+. Non biota such as sand and pebbles were the second most FO at 75%, these observations support beluga feeding on Sandlance, and species known to burrow in substrate (Pearson et al., 1984). Sandlance larvae became the second most abundant fish larvae in the Beaufort Sea in 2011 following its first observation in 2010 (Falardeau et al., 2014). Among Arctic cod otoliths (*n* = 18) 63% were between ages 0+ and 2+, with a maximum age of 4+. Two eelpouts (*Lycodes sp.*) were examined to be ages 2+ and 5+, and one flounder (*Pleuronectidae sp.*) was identified as age 7+ (Table 1).

Observed Beluga Feeding behaviour
The clear water surrounding Ulukhaktok enabled direct visual observations of beluga behaviour below the water surface. Interviewees indicated that at least 14 of 20 groups of belugas observed between July 1st and August 9th, 2014, were feeding in the vicinity of Ulukhaktok (Table 2). The number of whales in the feeding groups ranged from 1 to 15 individuals; feeding groups were composed of adult whales (n = 10, white or white and light grey whales) or included newborn and/or subadult (n = 4, blue/black whales; (Suydam 2009). Feeding behaviour was described for four groups, and included the description by two interviewees of whales trapping fish by creating a circle of bubbles and herding schools of fish toward the middle of a group of feeding whales (A. Kudlak, G. Kudlak). Further details were not available about this observation, but to our knowledge, this is the first observation recorded for this type of foraging behaviour in beluga whales. Bubbles are used as a foraging strategy by humpback whales (*Megaptera novaeangliae*), which expel air to form a vertical cylinder-ring of bubbles around prey (Wiley et al., 2011); and, the carousel method used by killer whales (*Orcinus orca*) includes large bubbles being emitted close to the water’s surface to assist with the capture of herring (Similä, et al., 1993). Beluga were also described as spreading out and feeding, communicating with one another, eating, and observed with fish in the mouth after the harvest (Figure 2). Interviewees observed Arctic char and sand in the stomachs of the whales; however, interviewees did not share observations about beluga feeding from the ocean floor. The presence of sand in the stomachs of beluga is consistent with a diet that included sand lance, as this species of forage fish is known to burrow in the seafloor (Bizzarro et al., 2016). One participant observed beluga whales eating small fish and Arctic Char at the mouth of the Kaylihok River (P. Ekpakohak).
Feeding was observed throughout the day, but more frequently in the afternoon and/or evening, and not at night. It is relevant to include the time of day because it is complimentary to the observation being described; and, time of day influenced diving rates in some locations in the eastern Arctic (Heide-Jørgensen et al., 2001). The timing of observations is considered unbiased because harvesters hunted and observed beluga opportunistically.

Exploring drivers of the event

Prior to 2014 there were only sporadic harvests of beluga near the two outlying marine coastal communities of Sachs Harbour and Ulukhaktok (Strong, 1989) with little details and supporting data about the events because they were outside the scope of the regular harvest monitoring program. The most recent harvests of belugas in Sachs Harbour (2008, 2010) occurred in the fall, and stomach contents predominantly included Greenland cod (Gadus ogac) (Loseto unpublished). During the fall whales are migrating westward towards their wintering habitat (Richard et al., 2001). The 2014 event that occurred in the summer and may represent a change in the movement and relative distribution of EBS beluga. Large aggregations of beluga outside of the Mackenzie Estuary during the summer season does not infer avoidance of the estuary. To be able to confirm a change in the population distribution there would be need for several years of systematic surveying. In the absence of such data we consider this event an observation point of discussion on distribution shifts.

Two hypotheses were proposed by the interview participants for the change in distribution observed in 2014; they may have moved close to Ulukhaktok to avoid noise to the west of the community or possibly been avoiding killer whales. Beluga are sensitive to anthropogenic noise (Finley et al., 1990, Lesage et al., 1999) and are known to move inshore in the presence of killer
whales (*Orcinus orca*) (Ferguson et al., 2000). A pack of killer whales close to Melville Island and killer whale sightings near Ulukhaktok and Sachs Harbour had been previously observed in 2013 (dorsal fins and seals hauling up on shore) (naturenorth.com/OCA/OCAsightings.html).

Given the lack of knowledge of disturbances at the time of the event, beluga may have shifted their seasonal distribution in the Beaufort Sea in relation to resources or lack thereof, specifically their preferred prey. This is supported by the stomach content analyses and direct observation of beluga feeding by Ulukhaktomiut (Table 2). EBS Belugas are thought to preferentially feed on Arctic cod (Loseto et al., 2009, Quakenbush et al., 2015), and satellite telemetry has revealed tagged whales making repeated dives to depths of ~200–400m near the Beaufort Sea shelf break (Hauser et al., 2015, Richard et al., 2001), areas found to support dense aggregations of adult Arctic Cod (Geoffroy et al., 2016, Majewski et al., 2017). Further, analysis of beluga locations collected during aerial surveys in August of 2007–2009, suggest that habitat selection in the offshore Beaufort Sea is likely driven feeding opportunities as beluga showed preference for environmental conditions associated with forage fish aggregations (Hornby et al., 2017). Recent analyses of Mackenzie Estuary harvested beluga whales showed isotopic niche breadth and carbon stable isotope ratios that support opportunistic feeding in 2014 relative to previous years (Choy et al., 2017). Net-validated hydroacoustic surveys identified low biomass of age 1+ Arctic cod throughout the southern Beaufort Sea and Amundsen Gulf during the 2014 open water season (Geoffroy et al., 2016) which might have led belugas to rely in other prey such as Sandlances in 2014.
CONCLUSIONS

We present information from TLK and stomach content analyses from an unusual beluga harvest in Ulukhaktok, NT in July and August of 2014 that provided a rare opportunity to collect information on demographics, behaviour, and direct diet information. Stomach contents and observations of feeding provided a short-term snapshot of beluga diet and foraging behaviour on Sand lance. Whether this was a unique event or one to become more commonly observed in the future remains to be seen and the significance of the event to the EBS population remains unclear.

Findings suggests that belugas are adaptable and can adjust their distribution, and foraging behaviour in response to ecosystem change as observed in other studies (O’Corry-Crowe et al., 2016). Consequences of a dietary shift from Arctic cod to Sand lance are not known. The two forage fishes may have comparable total energetic content (e.g., 4.70 ± 0.19 and 5.06±0.11 KJ·g⁻¹ ww for Arctic cod and Sand lance collected in Hudson Bay, respectively; (Elliott and Gaston, 2008), but may differ with respect to lipid quality (e.g. essential fatty acids).

Further, belugas may expend more energy seeking alternative prey and foraging on Sand lance, a species known to burrow and undergo diurnal migrations (e.g., (Pearson et al., 1984).

While this unusual event has not recurred in the three years since 2014, it may represent a future scenario. Research that integrates beluga distribution and diet together with environmental drivers over a longer period of time will provide a better understanding of responses to ecosystem change. Continuing the long-term partnership between scientists, co-management partners and Inuvialuit hunters will enable integration of knowledge that is relevant to beluga ecology and management.
ACKNOWLEDGEMENTS

This project was supported by multiple funding agencies including Fisheries and Oceans Canada, the Northern Contaminants Program (Indigenous and Northern Affairs Canada), and the Fisheries Joint Management Committee. Ethics approval was received from University of Manitoba (Protocol #J2014:102 (HS17209)). We are grateful for the partnerships and support of Olokhatomiut Hunters and Trappers Committee: Joshua Oliktoak, Gilbert Olifie, Gibson Kudlak, Margaret Kanayok, Adam Inuktalik, John Alikamik and Jack Akhiatak. We thank R.A. Kudlak, G. Okheena, D. Kuptana, G. Kudlak, K. Nigiyok, P. Ekpakohak, J. Haluksit and an Anonymous Elder for their time and participation in the TEK interview process.

REFERENCES

Finley, K. J. 1982. The estuarine habitat of the beluga or white whale, Delphinapterus leucas. Cetus. 4: 4-5.

Geoffroy, M., Majewski, A., Leblanc, M., Gauthier, S., Walkusz, W., Reist, J. D. and Fortier, L. 2016. Vertical segregation of age-0 and age-1+ polar cod (Boreogadus saida) over the annual cycle in the Canadian Beaufort Sea. Pol. Biol. 39: 1023-1037.

TABLE CAPTIONS

Table 1. Beluga stomach content analyses with percent frequency of occurrence (% FO). % FO is the number of stomachs that contained a prey species divided by the total number of stomachs that contained prey (x100).

Table 2. Summary of TLK observations of beluga feeding behaviours near Ulukhaktok during the summer harvest of 2014. Interviewees are listed in Table S1.

Table S1. Background information for the eight interviewees in Ulukhaktok, Northwest Territories.

FIGURE CAPTIONS

Figure 1. Map of study area located in the Inuvialuit Settlement Region, Northwest Territories Canada. Communities Aklavik, Inuvik and Tuktoyaktuk harvest whales along the coast of the Mackenzie Estuary. Blue ellipses near the community of Ulukhaktok identify the areas where belugas were harvested in the summer of 2014.

Figure 2. Ulukhaktomuit harvester photograph (G. Okheena) of landed beluga whale with prey in mouth. Prey are identified as sandlance (*Ammodytes sp.*).
Figure 1. Map of study area located in the Inuvialuit Settlement Region, Northwest Territories Canada. Communities Aklavik, Inuvik and Tuktoyaktuk harvest whales along the coast of the Mackenzie Estuary. Blue ellipses near the community of Ulukhaktok identify the areas where belugas were harvested in the summer of 2014.

215x279mm (300 x 300 DPI)
Figure 2. Ulukhaktomuit harvester photograph (G. Okheena) of landed beluga whale with prey in mouth. Prey are identified as sandlance (Ammodytes sp.).

225x400mm (72 x 72 DPI)
Table 1. Stomach content analyses with percent frequency of occurrence (% FO). % FO is the number of stomachs that contained a prey species divided by the total number of stomachs that contained prey (x100).

<table>
<thead>
<tr>
<th>Whale ID</th>
<th>partially digested fish</th>
<th>spines</th>
<th>squid beak pieces</th>
<th>invert. parts</th>
<th>parasitic worms</th>
<th>other</th>
<th>Sandlance (Ammodytes sp.)</th>
<th>Eelpout (Zoarcidae)</th>
<th>Sculplins (Cottidae)</th>
<th>Arctic cod (B. saida)</th>
<th>Flounder (Pleuronectidae)</th>
<th>Fourline Snakeblenny (E. praecisus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULU-14-04</td>
<td>20</td>
<td></td>
<td>>20</td>
<td>present</td>
<td></td>
<td></td>
<td>piece of garbage bag</td>
<td>147</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULU-14-06</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sand</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULU-14-07</td>
<td>65 Sandlance</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sand</td>
<td>218</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULU-14-11</td>
<td>45 Sandlance</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sand and pebbles</td>
<td>666</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULU-14-14</td>
<td>1 large char</td>
<td></td>
</tr>
<tr>
<td>ULU-14-18</td>
<td>20 Sandlance</td>
<td>15</td>
<td>2</td>
<td>present</td>
<td></td>
<td></td>
<td>sand</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULU-14-20</td>
<td>187 Sandlance</td>
<td>10</td>
<td>2</td>
<td>sand and pebbles</td>
<td></td>
<td></td>
<td></td>
<td>644</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULU-14-21</td>
<td>187 Sandlance</td>
<td>10</td>
<td>2</td>
<td>sand</td>
<td></td>
<td></td>
<td></td>
<td>647</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULU-14-27</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>464</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULU-14-30</td>
<td>15 Sandlance</td>
<td>24</td>
<td></td>
<td>1 sand</td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULU-14-UKN</td>
<td>42 Sandlance</td>
<td>31</td>
<td>present</td>
<td>11 vegetation</td>
<td></td>
<td></td>
<td></td>
<td>506</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| % FO | 25.0 | 50.0 | 25.0 | 25.0 | 75.0 | 91.7 | 16.7 | 16.7 | 16.7 | 16.7 | 8.3 | 8.3 |
Table 2. Summary of TLK observations of beluga feeding behaviours near Ulukhaktok during the summer harvest of 2014. Interviewees are listed in Table S1.

<table>
<thead>
<tr>
<th>Feeding Characteristic Observed</th>
<th>Yes</th>
<th>No</th>
<th>Did not mention this</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beluga groups observed feeding</td>
<td>10-12</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Beluga groups assumed to be feeding</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Feeding behavior described</td>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Feeding occurred in the...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Morning</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Afternoon</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Evening</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Night</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Beluga were observed to...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trap fish by making a circle of bubbles and herding the school of fish to the belugas</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>spread out and feed, as well as communicate to one another</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>have fish in the mouth</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>be eating</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Stomach contents contained</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Char</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Crawling fish (Aulayuk), sand lance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>