P-Stereogenic β-Aminophosphines: Preparation and Applications in Enantioselective Organocatalysis

Hsin Y. Su and Mark S. Taylor

Version Post-print/accepted manuscript

Publisher’s Statement This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Organic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see 10.1021/acs.joc.7b00199.

How to cite TSpace items

Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the author manuscript from TSpace because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page.

This article was made openly accessible by U of T Faculty. Please tell us how this access benefits you. Your story matters.
P-Stereogenic β-Aminophosphines: Preparation and Applications in Enantioselective Organocatalysis

Hsin Y. Su and Mark S. Taylor*

Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6 Canada

ABSTRACT: The synthesis of stereodefined β-aminophosphines having both carbon- and phosphorus-based chirality centers is described. The method involves resolution of a mixture of β-aminophosphine oxide diastereomers accessed by ring-opening of an amino alcohol-derived cyclic sulfamidate. A stereospecific, borane-promoted reduction of β-aminophosphine oxides, which occurs under mild conditions and with inversion of configuration at phosphorus, is a key step in this process. The products obtained are new building blocks for the synthesis of P-chiral ligands and organocatalysts. In a proof-of-concept application in organocatalysis, the diastereomeric P-chiral β-aminophosphine-based bifunctional thioureas displayed significantly different activities in the Morita–Baylis–Hillman reaction of methyl acrylate with benzaldehyde derivatives.
INTRODUCTION

P-Stereogenic phosphines have been used extensively in enantioselective catalysis, particularly as chiral ligands or organocatalysts. Preparing these compounds in enantioenriched form is a challenge, and continues to inspire the development of new synthetic methods. Approaches that have been implemented successfully include resolution, the use of chiral auxiliaries, kinetic and dynamic kinetic resolution, desymmetrization and enantioselective P-arylation or P-alkylation. Phosphines that possess an additional element of chirality along with the P-stereogenic center present unique potential advantages. Opportunities exist to prepare such compounds efficiently, taking advantage of methods for the selective synthesis or separation of diastereomers. The ability to vary the relative configuration of the two chirality centers, in addition to other steric and electronic properties, may also be useful when optimizing catalyst performance. Several types of P-stereogenic phosphines containing one or more additional chirality centers or other elements of chirality (e.g., chirality axes) have been synthesized (Figure 1).

Figure 1. Examples of reported P-stereogenic phosphines having an additional element of chirality.
We recently developed a protocol for the synthesis of chiral β-aminophosphines by ring-opening of amino alcohol-derived cyclic sulfamidates with metal diarylphosphinites (Scheme 1a).\(^\text{10}\) Using secondary phosphine oxides rather than secondary phosphines\(^\text{11,12}\) as pro-nucleophiles for ring-opening proved to be particularly advantageous for the synthesis of derivatives having substituted aryl groups at phosphorus, as it minimized the purification and handling of air-sensitive phosphine intermediates.\(^\text{13}\) β-Aminophosphines are useful precursors to chiral ligands\(^\text{14–19}\) and organocatalysts,\(^\text{20–23}\) and access to P-aryl-substituted derivatives creates opportunities to explore structure–activity relationships for these types of catalytic applications. The ability to vary the phosphine substituents also suggested the possibility of generating P-stereogenic β-aminophosphines from unsymmetrical phosphine oxides (Scheme 1b). The reaction of an enantiopure sulfamidate with a metal diarylphosphinite derived from a racemic secondary phosphine oxide would result in a mixture of diastereomers. Phosphines of defined configuration at the two chirality centers could be accessed by separation of the diastereomers — by chromatography or recrystallization, again taking advantage of the ease of isolation and handling of phosphine oxide derivatives — followed by stereospecific reduction. Here, we describe the successful realization of this strategy, and the preparation of novel, stereodefined β-aminophosphines having both carbon- and phosphorus-based chirality centers. In addition to the sulfamidate/diarylphosphinite coupling mentioned above, a stereospecific, borane-mediated reduction of β-aminophosphine oxides was a key step in the reaction sequence. The products were employed to synthesize the first examples of bifunctional organocatalysts having a P-stereogenic phosphine moiety, revealing an unexpected effect of relative configuration on catalytic activity in the asymmetric Morita–Baylis–Hillman reaction.
Scheme 1. (a) Preparation of β-aminophosphines from cyclic sulfamidates and diarylphosphinites; (b) Envisioned synthesis of P-chiral congeners.

RESULTS AND DISCUSSION

Preparation and resolution of P-chiral β-aminophosphine oxides.

The targets for our initial studies were diastereomeric ligands \((S,R_p)\)-1a and \((S,S_p)\)-1b shown in Scheme 2a, which combine a tert-leucinol-derived chirality center with the \((o\text{-anisyl})(phenyl)phosphine substitution pattern characteristic of the iconic P-stereogenic phosphines PAMP and DIPAMP.\(^{24}\) Related examples of stereodefined β-aminophosphines having chirality centers at the phosphorus atom at the α- or β-position are 4, which was prepared by diastereoselective addition of enantioenriched, lithiated PAMP–borane to an imine (Scheme 2b),\(^9\) and the diastereomers \((R_p,R)\)-5a and \((S_p,R)\)-5b, which were generated from the borane complex of enantiopure \(\text{trans}\)-1-phenylphospholane-2-carboxylic acid.\(^9\)
Scheme 2. (a) Structures of β-aminophosphines (S,R_p)-1a and (S,S_p)-1b targeted in this study; (b) Approaches to previously reported β-aminophosphines 4, (R_p,R)-5a and (S_p,R)-5a. o-An denotes ortho-anisyl (2-methoxyphenyl).

Unsymmetric phosphine oxide 2, the starting material needed for the preparation of (o-anisyl)(phenyl)phosphines (S,R_p)-1a and (S,S_p)-1b, was prepared according to reported protocols. Compound 2 was then coupled with sulfamidate 3 using the procedure developed in our laboratory, yielding a mixture of diastereomeric, tert-butoxycarbonyl- (Boc)-protected aminophosphine oxides (Scheme 3a). Removal of the Boc group was accomplished by treatment with trifluoroacetic acid in dichloromethane, and the resulting amine was treated with anhydrous hydrogen chloride in diethyl ether to generate a 1:1 mixture of diastereomeric ammonium salts (S,R_p)-8a·HCl and (S,S_p)-8b·HCl. A 70% yield was obtained over the three-step process of sulfamidate ring-opening, deprotection and salt formation. It should be noted that the phosphine oxide chirality center is subject to epimerization under the conditions for Boc deprotection shown in Scheme 3a. This fact was established by subjecting diastereomically pure (S,R_p)-7a —
obtained from the mixture by preparative thin layer chromatography on silica gel, using a mixture of diethyl ether, hexanes and triethylamine (15:5:1 by volume) as the mobile phase — to trifluoroacetic acid in dichloromethane (Scheme 3b). The product aminophosphine oxide (S,R_p)-$8a$ was obtained as a 9:1 mixture of diastereomers, as assessed by 31P NMR spectroscopy.

Presumably, the epimerization follows a pathway similar to that proposed by Mislow and co-workers for the racemization of tertiary phosphine oxides by HCl.26 Epimerization could be suppressed by using boron trifluoride diethyl etherate27 rather than trifluoroacetic acid as the reagent for deprotection of the Boc group. Since the present approach involves separation of the diastereomers after cleavage of the Boc group, the configurational instability of the phosphine oxide in the presence of acid is not an issue, and the deprotection was conducted using TFA.

Scheme 3. (a) Preparation of diastereomeric hydrochloride salts (S,R_p)-$8a$•HCl and (S,S_p)-$8b$•HCl from secondary phosphine oxide 2 and enantioenriched sulfamidate 3; (b) Epimerization of the tertiary phosphine oxide chirality center under conditions for deprotection of the Boc group. Conditions A: CF$_3$CO$_2$H, CH$_2$Cl$_2$, 23 °C. Conditions B: BF$_3$•OEt$_2$, 4 Å MS, CH$_2$Cl$_2$, 23 °C.
Separation of the diastereomeric ammonium salts was accomplished by fractional recrystallization from a mixture of acetonitrile and diisopropyl ether (3:1 by volume, Scheme 4). The less soluble isomer was obtained with a diastereomeric ratio of greater than 40:1. It was found to have the R configuration at phosphorus, as determined by X-ray crystallography (Supporting Information, Figure S1). The filtrate was enriched in the (S,S_p) isomer, with a diastereomeric ratio of 3:1. The mixture of diastereomers obtained from the filtrate was carried through subsequent manipulations until column chromatography could be used to obtain diastereomerically pure material (see below). The hydrochloride salts were converted to the corresponding free amines by treatment with Amberlite IRA-400, a basic anion exchange resin.

Scheme 4. Separation of diastereomeric β-aminophosphine oxide hydrochloride salts by fractional recrystallization.

Stereospecific reduction of P-chiral β-aminophosphine oxides.

Having established that the diastereomeric β-aminophosphines could be separated by recrystallization of their hydrochloride salts, we turned our attention to the stereospecific reduction of the phosphine oxide group. When (S,R_p)-8a was subjected to diphenylsilane in the absence of solvent at 140 °C, the reduction was achieved in quantitative yield, but the...
aminophosphine was obtained as a 1:1 mixture of diastereomers (Scheme 5a). Based on the reported rate constants for racemization of (alkyl)diarylphosphines via pyramidal inversion, the product is unlikely to be configurationally stable at 140 °C.29 Other silane-derived reagents, including chlorosilane (with or without amine additives) and phenylsilane, have been used to reduce optically active phosphine oxides to phosphines.30 Using such reagents, racemization at phosphorus can usually be minimized, but not entirely eliminated, and care is often needed to avoid oxidation of the phosphine product during the workup and purification steps.

Stereospecific reductions of phosphine oxides have also been achieved using methyl triflate and lithium aluminum hydride, but the former reagent would not likely be compatible with the free amine group in the present system. On the other hand, the mild conditions that have been employed for stereospecific reductions of α- and β-hydroxyphosphine oxides appeared to be particularly promising as a solution to this problem.31 Reaction of tertiary α- and β-hydroxyphosphine oxides with borane complexes (BH\textsubscript{3}•THF or BH\textsubscript{3}•SMe\textsubscript{2}) resulted in the efficient formation of the corresponding phosphine–borane complexes in THF at room temperature or 60 °C.31c Unfunctionalized tertiary phosphine oxides were unreactive under these conditions, and it was proposed that the formation of a cyclic complex from BH\textsubscript{3} and the hydroxyphosphine oxide served to activate the phosphorus–oxygen bond towards reduction.

Based on this proposal, reductions of β-aminophosphine oxides such as \textit{8a} and \textit{8b} under similar conditions could be envisioned, with the amino group interacting with the boron Lewis acid in place of the OH group. Indeed, treatment of (S,R\textsubscript{p})-\textit{8a} with BH\textsubscript{3}•SMe\textsubscript{2} in THF at 70 °C resulted in the evolution of hydrogen gas and the reduction of the phosphine oxide, leading to the formation of phosphine–borane complex (S,R\textsubscript{p})-\textit{1a}•BH\textsubscript{3} (Scheme 5b). In a similar way, the mixture of aminophosphine oxide diastereomers enriched in (S,S\textsubscript{p})-\textit{8b} (3:1 d.r.) was reduced
under these conditions, leading to phosphine–borane complexes that could be separated by flash column chromatography on silica gel. Complex (S,Sₚ)-1b•BH₃ was obtained in 20:1 d.r. The formation of air-stable phosphine–borane complexes that can be purified by column chromatography is an advantage of the borane-mediated reduction reduction protocol. As was observed previously, unfunctionalized tertiary phosphine oxides were unreactive under these conditions, as were N-Boc-protected β-aminophosphine oxide derivatives (data not shown).

Scheme 5. (a) Epimerization upon reduction of phosphine oxide (S,Rₚ)-8a by diphenylsilane. (b) Stereospecific, borane-mediated reduction of epimeric phosphine oxides (S,Rₚ)-8a and (S,Sₚ)-8b. The relative configuration of (S,Sₚ)-8b was established by conversion to (S,Sₚ)-9b•BH₃ and structural determination by X-ray crystallography.

In contrast to the retention of configuration that has generally been observed for silane-mediated reductions of phosphine oxides, inversion of configuration at phosphorus has been documented.
for reductions of α- and β-hydroxyphosphine oxides with BH₃ complexes. The stereochemical outcome of the BH₃-mediated reduction was rationalized in terms of a mechanism involving S₅²-type cleavage of the P–O bond by an external hydride nucleophile. As shown in Scheme 5b, reductions of β-aminophosphine oxides by BH₃•SMe₂ also proceed with inversion of configuration. The configuration of the phosphine–borane obtained from (S,Sₚ)-8b was assigned by single crystal X-ray diffraction analysis of the corresponding para-nitrophenylurea derivative, (S,Sₚ)-9b•BH₃ (Supporting Information, Figure S2). Thus, it appears that a similar mechanistic pathway to that proposed for hydroxyphosphine oxide reduction – namely, formation of a cyclic borane adduct and S₅²-type attack of hydride on the activated P–O bond – is operative.

The free aminophosphines (S,Rₚ)-1a and (S,Sₚ)-1b were obtained by treatment of the phosphine–borane complexes with an excess of 1,4-diazabicyclo[2.2.2]octane (DABCO) in degassed toluene at 40 °C (Scheme 6). This reaction proceeds with retention of configuration at phosphorus. Under the relatively mild conditions of the decomplexation reaction, epimerization of the P-stereogenic center could be largely suppressed. The products were purified by flash chromatography on silica gel with degassed solvents, using compressed nitrogen gas to speed the flow of the eluent through the column.

Preparation and application of bifunctional organocatalysts derived from \(P\)-stereogenic β-aminophosphines.

As an initial application in asymmetric catalysis, we explored the synthesis of bifunctional organocatalysts based on (\(S,R_p\))-1a and (\(S,S_p\))-1b. Ureas, thioureas, amides and sulfonamides derived from chiral β-aminophosphines are useful catalysts for enantioselective Morita–Baylis–Hillman reactions and for a range of related transformations.\(^{21,22,23}\) Although \(P\)-stereogenic phosphines have been employed as chiral Lewis base catalysts (for example, for \([3 + 2]\) annulations,\(^{32}\) \(\gamma\)-additions to allenoates\(^{33}\) and acylations of secondary alcohols\(^{34}\)), bifunctional hydrogen bond donor / phosphine Lewis base catalysts having a \(P\)-stereogenic center have not been explored previously. Based on reported structure–activity relationships for Morita–Baylis–Hillman reactions catalyzed by bifunctional phosphines,\(^{21a}\) we prepared electron-deficient thioureas derived from the epimeric aminophosphines (Scheme 7).

```
\[\text{Scheme 7. Synthesis of bifunctional thioureas derived from (}\(S,R_p\)\)-1a and (\(S,S_p\))-1b.}\]
```
The phosphine–thioureas depicted in Scheme 7 were evaluated as catalysts for the Morita–Baylis–Hillman reaction of methyl acrylate and benzaldehyde (Table 1). The conditions employed for this reaction are based on those developed by Lu and co-workers. The 4 Å molecular sieves (MS) were substituted for 5 Å MS, which gave higher yields without appreciably altering the enantioselectivity. The configuration of the phosphorus chirality center had a significant effect on the yield of this transformation, with the (S,Rp)-configured catalysts showing higher activity than the (S,Sp)-configured variants.

Table 1. Influence of the relative configuration of the P-stereogenic phosphine–thiourea catalyst on yield and enantioselectivity for the Morita–Baylis–Hillman reaction.

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>% yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S,Rp)-10a</td>
<td>57</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>(S,Sp)-10b</td>
<td>10</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>(S,Rp)-11a</td>
<td>53</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>(S,Sp)-11b</td>
<td>12</td>
<td>72</td>
</tr>
</tbody>
</table>

a Yield after purification by flash column chromatography on silica gel. b Determined by high performance liquid chromatography (HPLC) using a chiral stationary phase. The absolute configuration was assigned by comparing the sign of the optical rotation to the literature data.

Although the results of Table 1 pointed towards differences in the behavior of the epimeric catalysts for both thiourea substitution patterns, we sought to put this result on more solid ground through further comparisons of the 4-nitrophenyl-substituted thiourea catalysts (S,Rp)-10a and (S,Sp)-10b with (S)-10c, a variant lacking the P-stereogenic center. These comparisons were conducted for benzaldehyde itself, using the results from entries 1 and 2 of Table 1, and for two
relatively electron-rich, substituted variants, 4-bromobenzaldehyde and para-tolualdehyde, which show relatively poor reactivity in Morita–Baylis–Hillman reactions catalyzed by bifunctional thioureas. The results are summarized in Table 2. A consistent trend was evident across the three aldehyde substrates, with catalyst turnover numbers decreasing in the order (S,Rp)-10a > 10c > (S,Sp)-10b. A small but consistent increase in enantioselectivity for P-chiral (S,Rp)-10a versus 10c was also observed.

Table 2. Comparison of yield and enantioselectivity data for P-chiral catalysts (S,Rp)-10a and (S,Sp)-10b, and catalyst 10c lacking the P-stereogenic center.

<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>Catalyst (S,Rp)-10a</th>
<th>Catalyst (S)-10c</th>
<th>Catalyst (S,Sp)-10b</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCHO</td>
<td>57% yield 76% ee</td>
<td>33% yield 68% ee</td>
<td>10% yield 73% ee</td>
</tr>
<tr>
<td>4-BrC₆H₄CHO</td>
<td>80% yield 81% ee</td>
<td>63% yield 74% ee</td>
<td><5% yield % ee ND</td>
</tr>
<tr>
<td>4-MeC₆H₄CHO</td>
<td>41% yield 73% ee</td>
<td>21% yield 68% ee</td>
<td><5% yield % ee ND</td>
</tr>
</tbody>
</table>

a Yields are of isolated products after purification by flash column chromatography on silica gel. Enantiomeric excess was determined by high performance liquid chromatography (HPLC) using a chiral stationary phase.

Stereochemical models have been proposed for Morita–Baylis–Hillman and related reactions catalyzed by chiral β-aminophosphines,²²ᵃᵇ and insight has been gained through computational
modeling. A rationale for the difference in activity between the P-stereogenic aminophosphate epimers studied here would be of interest, but the issues involved are complex. Using diazabicyclo[2.2.2]octane (DABCO) as catalyst, the aldol-type addition step and/or the elimination step may be rate-limiting, depending on the reaction conditions. Experimental kinetic or isotope effect data are not available for the bifunctional phosphine-catalyzed variant of this reaction. Thus it is not clear which step(s) of the catalytic cycle are influenced by the change in configuration of the P-stereogenic center. Nonetheless, we used density functional theory (DFT) calculations using the B3LYP functional and the 6-31G(d,p) basis set to model the adducts of catalysts (S,R)-10a and (S,S)-10b with methyl acrylate (Figure 2). The starting geometries for these optimizations were based on the calculated structures of related adducts of naphthyl acrylate with a sulfonamide-functionalized bifunctional phosphine, from a study conducted by Lu, Huang and co-workers. The minimum-energy geometries of the adducts derived from the thiourea-functionalized, P-chiral variants preserve the intramolecular NH---O hydrogen bond that was identified in the previously reported computational study. The calculated free energy of the acrylate adduct of (S,S)-10b was 1.79 kcal/mol higher than that of (S,R)-10a. In the structure of the higher-energy diastereomer, the o-anisyl methoxy substituent occupies a position close to the acrylate-derived moiety. In contrast, these groups are oriented in opposite directions in the structure of the lower-energy diastereomer. To the extent that this energy difference is reflected in the relative concentrations of kinetically relevant species derived from (S,R)-10a and (S,S)-10b, the calculations may provide a plausible rationale for the effect of configuration of the P-stereogenic center on the activity of these bifunctional catalysts.
Figure 2. Calculated structures (B3LYP/6-31G(d,p)) and relative energies of the adducts of methyl acrylate with (S,R_P)-10a and (S,S_P)-10b. Ar denotes 4-nitrophenyl.

The results described above indicate that employing a P-stereogenic $(o$-anisyl)(phenyl)phosphino group of appropriate configuration provides an appreciable increase in catalytic activity, along with a more modest increase in enantioselectivity, relative to the diphenylphosphino group on which the most widely employed bifunctional organocatalysts are based. It should be noted that the best-in-class aminophosphine-bifunctional catalysts for Morita–Baylis–Hillman reactions are...
not derived from *tert*-leucine, but rather from threonine derivatives bearing bulky O-silyl substituents.35a Further improvements upon the results shown in Table 2 may be possible using P-chiral variants of the threonine-derived catalysts. It will also be of interest to identify other pairs of substituents on the P-stereogenic center that lead to more dramatic effects on activity and enantioselectivity for this and other organocatalytic reactions.

CONCLUSIONS

Ring-opening of enantiopure cyclic sulfamidates by unsymmetrical secondary phosphine oxide nucleophiles, followed by resolution of the mixture of diastereomers, provides access to new β-
aminophosphines having a P-stereogenic center. The stereospecific, borane-mediated reduction of β-aminophosphine oxides to β-aminophosphine–boranes was important to the successful implementation of this approach. A mechanistic link to previously reported reductions of α- and β-hydroxyphosphine oxides by borane complexes is likely, with both classes of substrates reacting with inversion of configuration at phosphorus.

Extending this process to other combinations of phosphine substituents will be of interest. The scope of the (symmetrical) secondary phosphine oxide–sulfamidate coupling reaction, which tolerates electron-deficient, electron-rich and sterically hindered aromatic substituents at phosphorus, is encouraging from this perspective.10 For the $(o$-anisyl)$($phenyl)$phosphine substitution pattern, resolution of the diastereomeric phosphine oxides was carried out by fractional recrystallization. However, the ability to separate the epimeric phosphine–borane complexes by column chromatography on silica gel was also important in providing access to the less soluble diastereomer in high purity. The possibility of achieving separation of diastereomers
by two techniques, and at different stages of the process, may be useful in extending this approach to other phosphine substitution patterns.

The organocatalysis experiments described here indicate that the configuration of the P-chiral phosphine substituent can influence the behavior of bifunctional thioureas derived from 1a and 1b. The primary effect is on catalyst activity, with the (S,R)-configured diastereomer showing higher activity than the diphenylphosphino variant and the (S,S)-configured diastereomer being significantly less active. A modest but consistent beneficial effect of the R_p-configured (o-anisyl)phenylphosphino substituent on enantioselectivity was also observed. Evaluating other P-chiral phosphine substituents may help to elucidate the factors responsible for this effect, and could lead to more pronounced improvements in catalytic properties. Given that β-aminophosphines are components of useful classes of chiral ligands, applications of P-chiral variants in transition metal catalysis are another potential direction for future studies.

EXPERIMENTAL SECTION

General Procedures. Stainless steel syringes were used to transfer air- and moisture-sensitive liquids. Flash column chromatography was carried out using 35–75 µm particle size silica gel.

Materials. All commercially available reagents and chemicals were used as received without purification. Benzaldehyde, p-tolualdehyde and 4-bromobenzaldehyde were purified by passing through a short plug of activated Al₂O₃ (basic, Brockmann I) immediately before use. All solvents were dried using a solvent purification system and degassed through three freeze-pump-thaw cycles. Deuterated solvents were degassed through three freeze-pump-thaw cycles. Unless otherwise stated, all reactions and purifications were carried out under argon atmosphere using Schlenk, vacuum line, or glovebox techniques in dry, oxygen-free solvents. Unsymmetrical
secondary phosphine oxide 2 and the tert-butyl cyclic sulfamidate 3 were synthesized according to published protocols.

Instrumentation. 500 MHz and 400 MHz spectrometers were employed for recording 1H (400 MHz), 13C(1H) (125 and 100 MHz), 31P(1H) (160 MHz), 11B (128 MHz) and 19F(1H) (376 MHz) NMR spectra at ambient temperature. 1H chemical shifts are reported as ppm relative to tetramethylsilane, and were measured by referencing the spectra to residual protium in the solvent. 31P chemical shifts are reported in parts per million (ppm) relative to 85% H$_3$PO$_4$ as an external reference. 19F chemical shifts are reported in ppm relative to CFCl$_3$ as an external reference. Coupling constants (J) are given in Hz. 1H data are reported as multiplicity (br = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet). Attenuated total reflectance infrared (IR) spectra were obtained in the solid form or as neat liquid, as indicated. High resolution mass spectroscopy (HRMS) experiments were carried out using a time-of-flight mass spectrometer equipped with a direct analysis in real time (DART) ion source. Melting points were as measured and are uncorrected. Enantiomeric excesses (ee) were determined by normal-phase HPLC analysis with a commercially available chiral stationary phase, using a mixture of hexanes–2-propanol as eluent and with UV detector set at 254 or 210 nm.

(R)-((S)-2-Amino-3,3-dimethylbutyl)(2-methoxyphenyl)(phenyl)phosphine oxide (8a). In a nitrogen-filled glovebox, an oven-dried screw-cap reaction tube equipped with a magnetic stirring bar was charged with KOt-Bu (0.31 g, 2.8 mmol). THF (6 mL) was then added outside of the glovebox. Racemic phosphine oxide 2 (0.65 g, 2.8 mmol) was dissolved in THF (6 mL) in a separate oven-dried pear-shaped flask and transferred dropwise into the reaction mixture via a syringe. The reaction was stirred at 23 °C for 10 min. Sulfamidate 3 (0.78 g, 2.8 mmol) was...
dissolved in THF (6 mL) in another oven-dried pear-shaped flask and transferred dropwise into the reaction mixture via a syringe. The reaction tube was then sealed and stirred at 60 °C for 17 h. The reaction was quenched with H₂SO₄ (80 mL, 2 M) and stirred vigorously at 23 °C for 45 min. It was then extracted two times with Et₂O, and the combined organic extracts were washed with saturated Na₂CO₃, followed by brine. The solution was dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give a brown oil.

The oil was taken up in CH₂Cl₂ (12 mL) and cooled to 0 °C. Trifluoroacetic acid (5.5 mL, 72 mmol) was added dropwise. The reaction mixture was stirred at 23 °C overnight. The volatiles were then removed on the rotary evaporator the next day. The residue was taken up in CH₂Cl₂ and washed with saturated Na₂CO₃. The aqueous layer was separated and extracted four times with CH₂Cl₂. The organic extracts were then combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give a brown oil.

To a round-bottom flask equipped with a magnetic stirring bar was added the oil. Et₂O (50 mL) was added. Anhydrous HCl (2.8 mL, 1 M, 2.8 mmol) was added dropwise at 23 °C with vigorous stirring. The white suspension was filtered over a Buchner funnel under vacuum to give **8a•HCl + 8b•HCl** (1:1 d.r., 0.71 g, 70%) as a white solid.

To a round-bottom flask equipped with a magnetic stirring bar was added the white solid. MeCN (27 mL) was added. The white suspension was stirred at 90 °C in an oil bath until homogeneity was observed. The flask was then removed from the oil bath and iPr₂O (9 mL) was added. The flask was sealed and allowed to cool down to 23 °C. The solvents were then removed on the rotary evaporator upon formation of a white precipitate until very little solvent remained. The resulting slurry was filtered over a Buchner funnel under vacuum to give enriched **8a•HCl** as a white solid. The process was repeated twice using MeCN (36 mL and 45 mL) and iPr₂O (12 and
15 mL) to give the final enriched 8a•HCl (>40:1 d.r., 0.21 g) as a white solid. The filtrates
containing 8b•HCl were combined and concentrated in vacuo to give a light brown residue (3:1
d.r., 0.49 g, 69%).

The white solid consisting of 8a•HCl was taken up in MeOH (40 mL) in a round-bottom flask.
Amberlite IRA-400 (OH) resin (5.0 g per gram of white solid) was added and stirred vigorously
at 23 °C for 30 min. The suspension was then filtered and the filtrate was concentrated in vacuo
to give product 8a with high analytical purity (>40:1 d.r., 0.19 g, 30%) as a colorless oil.

1H NMR (400 MHz, CDCl₃): δ 7.91 (ddd, J = 13.0, 7.6, 1.8 Hz, 1H), 7.83 (ddt, J = 11.6, 6.9, 1.5
Hz, 2H), 7.46 (ttdd, J = 8.6, 6.6, 3.3, 1.7 Hz, 4H), 7.11–7.04 (m, 1H), 6.90 (dd, J = 8.2, 5.4 Hz,
1H), 3.83 (s, 3H), 3.00 (ddd, J = 12.5, 11.2, 1.2 Hz, 1H), 2.73 (ddd, J = 15.1, 10.9, 1.2 Hz, 1H),
2.40 (s, 2H), 2.25 (ddd, J = 15.1, 13.4, 11.2 Hz, 1H), 0.91 (s, 9H).

13C NMR (100 MHz, CDCl₃): δ 159.6 (d, J = 4.0 Hz), 133.8 (d, J = 4.0 Hz), 133.8 (d, J = 12.5 Hz), 128.2 (d, J = 12.0 Hz), 122.2 (d, J = 99.0 Hz), 121.3 (d, J = 3.0 Hz), 131.0 (d, J = 10.0 Hz), 128.2 (d, J = 12.0 Hz), 122.2 (d, J = 95.0 Hz), 121.3 (d, J = 11.0 Hz), 111.0 (d, J = 7.0 Hz), 55.4, 55.3 (d, J = 5.0 Hz), 35.0 (d, J = 13.0 Hz), 31.8 (d, J = 73.0 Hz), 25.9. **31P NMR (160 MHz, CDCl₃):** δ 31.96. **IR (neat, cm⁻¹):** 2958 (w), 1592 (m), 1579 (m), 1477 (m), 1466 (m), 1435 (m), 1240 (m), 1181 (s), 1141 (m), 1108 (m), 1078 (m), 1024 (m), 923 (br), 801 (m), 776 (s), 741 (s), 703 (s). **Optical rotation:** [α]D²⁰ = +31.2 (c = 0.10 g mL⁻¹, CHCl₃). **HRMS (DART, m/z):** calculated for
C₁₉H₂₇NO₃P [(M + H)⁺]: 332.1774. Found: 332.1779.

(S)-1-((S)-(2-Methoxyphenyl)(phenyl)phosphanylborane)-3,3,-dimethylbutan-2-amine

(1b•BH₃). The light brown residue consisting of 8b•HCl was taken up in MeOH (60 mL).
Amberlite IRA-400 (OH) resin (5.0 g per gram of residue) was added and stirred vigorously at
23 °C for 30 min. The suspension was then filtered and the filtrate was concentrated in vacuo to
give crude \(8b\) (3:1 d.r., 0.47 g) as a light brown oil.

To an oven-dried round-bottom flask equipped with a magnetic stirring bar was added crude \(8b\) (0.47 g, 1.4 mmol). THF (15 mL) was added and cooled down to 0 °C. BH\(_3\)•SMe\(_2\) (0.48 mL, 5.1 mmol) was then added dropwise via a syringe at 0 °C under a positive pressure of argon. The reaction was stirred at 70 °C for 4 hours. The reaction was quenched with saturated NH\(_4\)Cl (20 mL) and extracted four times with CH\(_2\)Cl\(_2\). The organic extracts were combined, dried over anhydrous Na\(_2\)SO\(_4\), filtered and concentrated in vacuo to give the crude product. Purification by flash chromatography on silica gel (100 g of Si\(_2\)O per gram of crude product; 1% MeOH/CH\(_2\)Cl\(_2\)) gave \(1b•BH_3\) (80 mg, 25% over two steps) as a colorless oil.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.88 (ddd, \(J = 13.6, 7.6, 1.6\) Hz, 1H), 7.72–7.63 (m, 2H), 7.51–7.45 (m, 1H), 7.44–7.33 (m, 3H), 7.05 (tdd, \(J = 7.5, 1.9, 0.9\) Hz, 1H), 6.89 (dd, \(J = 8.1, 3.2\) Hz, 1H), 3.72 (s, 3H), 2.93 (ddd, \(J = 12.3, 10.4, 1.7\) Hz, 1H), 2.57 (ddd, \(J = 14.4, 12.6, 1.7\) Hz, 1H), 2.45 (ddd, \(J = 14.4, 12.3, 10.4\) Hz, 1H), 1.19–1.10 (m, 2H), 0.90 (s, 9H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 161.3 (d, \(J = 2.0\) Hz), 135.9 (d, \(J = 14.0\) Hz), 133.7 (d, \(J = 2.0\) Hz), 131.9 (d, \(J = 9.0\) Hz), 130.6 (d, \(J = 58.0\) Hz), 130.5 (d, \(J = 2.0\) Hz), 128.4 (d, \(J = 10.0\) Hz), 121.4 (d, \(J = 12.0\) Hz), 117.6 (d, \(J = 52.0\) Hz), 111.5 (d, \(J = 4.0\) Hz), 55.6 (d, \(J = 33.0\) Hz), 35.3 (d, \(J = 11.0\) Hz), 27.9 (d, \(J = 38.0\) Hz), 26.0. \(^{31}\)P NMR (160 MHz, CDCl\(_3\)): \(\delta\) 14.27 (d, \(J_{BP} = 83\) Hz).

\(^{1}\)B NMR (128 MHz, CDCl\(_3\)): \(\delta\) –38.44 (m).

IR (neat, cm\(^{-1}\)): 2958 (m), 2380 (m), 1589 (m), 1574 (m), 1477 (s), 1464 (m), 1433 (s), 1277 (s), 1248 (s), 1060 (s), 1019 (s), 909 (m), 801 (m), 756 (s), 728 (s), 696 (s). Optical rotation: \([\alpha]_{589}^{20} = +13.4 (\epsilon = 0.04\) g mL\(^{-1}\), CHCl\(_3\)). HRMS (DART, \(m/z\)): calculated for C\(_{19}\)H\(_{28}\)BNOP [(M + H\(^{+}\)]: 328.2008. Found: 328.2002.

(S)-1-((R)-(2-Methoxyphenyl)(phenyl)phosphanylborane)-3,3,-dimethylbutan-2-amine (1a•BH\(_3\)). To an oven-dried round-bottom flask equipped with a magnetic stirring bar was added...
phosphine oxide 8a (0.19 g, 0.57 mmol). THF (5 mL) was added and cooled down to 0 °C.

BH$_3$•SMe$_2$ (0.2 mL, 2.1 mmol) was then added dropwise via a syringe at 0 °C under a positive pressure of argon. The reaction was stirred at 70 °C for 4 hours. The reaction was quenched with saturated NH$_4$Cl (30 mL) and extracted four times with CH$_2$Cl$_2$. The organic extracts were combined, dried over anhydrous Na$_2$SO$_4$, filtered and concentrated in vacuo to give the crude product. Purification by flash chromatography on silica gel (2% MeOH/CH$_2$Cl$_2$) gave 1a•BH$_3$ (81 mg, 43%) as a colorless oil. 1H NMR (400 MHz, CDCl$_3$): δ 8.04 (ddd, $J = 13.8, 7.6, 1.7$ Hz, 1H), 7.63–7.50 (m, 3H), 7.43–7.33 (m, 3H), 7.11 (tdd, $J = 7.5, 2.1, 1.0$ Hz, 1H), 6.87 (ddd, $J = 8.3, 3.2, 0.9$ Hz, 1H), 3.63 (s, 3H), 3.03 (ddd, $J = 17.7, 14.1, 1.3$ Hz, 1H), 2.55 (ddd, $J = 14.2, 10.1, 1.3$ Hz, 1H), 1.99 (ddd, $J = 14.1, 10.1, 6.1$ Hz, 1H), 1.65 (s, 2H), 0.82 (s, 9H).

13C NMR (100 MHz, CDCl$_3$): δ 161.2 (d, $J = 2.0$ Hz), 137.6 (d, $J = 15.0$ Hz), 134.2, (d, $J = 2.0$ Hz), 131.4 (d, $J = 59.0$ Hz), 131.2 (d, $J = 9.0$ Hz), 130.3 (d, $J = 3.0$ Hz), 128.4 (d, $J = 10.0$ Hz), 121.4 (d, $J = 12.0$ Hz), 115.2 (d, $J = 53.0$ Hz), 111.0 (d, $J = 4.0$ Hz), 55.7 (d, $J = 90.0$ Hz), 35.1 (d, $J = 11.0$ Hz), 27.7 (d, $J = 38.0$ Hz), 25.9. 31P NMR (160 MHz, CDCl$_3$): δ 15.27 (d, $J_{BP} = 69$ Hz). 11B NMR (128 MHz, CDCl$_3$): δ –37.35 (m).

IR (neat, cm$^{-1}$): 2959 (m), 2371 (s), 1589 (m), 1574 (m), 1477 (s), 1463 (s), 1431 (s), 1278 (s), 1249 (s), 1061 (s), 1020 (s), 756 (s), 735 (s), 726 (s), 697 (s), 689 (s). Optical rotation: $[\alpha]_{589}^{20} = +5.4$ ($c = 0.04$ g mL$^{-1}$, CHCl$_3$). HRMS (DART, m/z): calculated for C$_{19}$H$_{28}$BNOP [(M + H)$^+$]: 328.2016. Found: 328.2002.

Formation of X-ray quality crystal for 8a•HCl. To a 2-dram vial was charged the filter cake consisting of 8a•HCl from the recrystallization experiment (>40:1 d.r., 10 mg). CH$_2$Cl$_2$ was added to dissolve the solid. Et$_2$O was then carefully layered on top of the solution and left aside undisturbed at 23 °C for a day to give a colorless crystal that was subjected to X-ray crystallographic analysis. M.p. (°C): 131–132.
Synthesis and X-ray crystallographic analysis of phosphine borane 9b•BH₃. To an oven-dried round-bottom flask equipped with a magnetic stirring bar was added phosphine borane 1b•BH₃ (47 mg, 0.14 mmol). CH₂Cl₂ (3 mL) was added and cooled down to 0 °C. 4-Nitrophenyl isocyanate (26 mg, 0.16 mmol) was added in one portion. The reaction was stirred at 23 °C overnight. The volatiles were concentrated in vacuo and the crude product was purified by flash chromatography on silica gel (1.7% MeOH/CH₂Cl₂) to give 9b•BH₃ (57 mg, 83%) as a light yellow solid.

To a 2-dram vial was charged 9b•BH₃. CH₂Cl₂ was added to dissolve the solid. MeOH was then layered carefully on top of the solution and left aside undisturbed at 23 °C for 10 days to give a yellow crystal that was subjected to X-ray crystallographic analysis. M.p. (°C): 167–169.

General Procedure for the DABCO-Mediated Deprotection of Phosphine Borane. To an oven-dried 2-dram vial equipped with a magnetic stirring bar was added the phosphine borane. Toluene (0.1 M) was added, followed by DABCO (1.5 equiv). The vial was sealed and stirred at 40 °C for 17 h. The volatiles were then concentrated in vacuo. The crude residue was purified by flash chromatography on silica gel using a positive pressure of N₂ and solvents pre-sparged with N₂ (2.5% MeOH/CH₂Cl₂) to give the pure product.

(S)-(R)-(2-Methoxyphenyl)(phenyl)phosphanyl)-3,3-dimethylbutan-2-amine (1a). This compound was synthesized according to the general procedure using phosphine borane 1a•BH₃ (39 mg, 0.12 mmol) and DABCO (20 mg, 0.18 mmol, 1.5 equiv) in toluene (1.2 mL). The crude product was purified by flash chromatography on silica gel (2.5% MeOH/CH₂Cl₂) to give the pure product (27:1 d.r., 30 mg, 79%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.45 (td, J = 7.6, 2.3 Hz, 2H), 7.37–7.28 (m, 4H), 7.18 (ddd, J = 7.6, 6.1, 1.7 Hz, 1H), 6.93 (t, J = 7.3 Hz,
1H), 6.86 (dd, \(J = 8.0, 4.0 \) Hz, 1H), 3.77 (s, 3H), 2.67 (ddd, \(J = 11.2, 9.2, 2.2 \) Hz, 1H), 2.59 (ddd, \(J = 13.9, 3.7, 2.2 \) Hz, 1H), 1.79 (ddd, \(J = 13.9, 11.2, 3.0 \) Hz, 1H), 0.93 (s, 9H). **\(^{13}\)C NMR (100 MHz, CDCl\(_3\))**: \(\delta \) 143.0, 133.3, 132.9 (d, \(J_{CP} = 19.0 \) Hz), 130.6, 128.5, 128.4 (d, \(J_{CP} = 7.0 \) Hz), 121.1 (d, \(J_{CP} = 4.0 \) Hz), 110.6 (d, \(J_{CP} = 2.0 \) Hz), 58.6 (d, \(J_{CP} = 14.0 \) Hz), 55.6, 35.1 (d, \(J_{CP} = 7.0 \) Hz), 31.0 (d, \(J_{CP} = 10.0 \) Hz), 26.2.

\(^{31}\)P NMR (160 MHz, CDCl\(_3\)): \(\delta \) –28.50. **IR (neat, cm\(^{-1}\))**: 2960 (s), 1586 (m), 1474 (s), 1432 (s), 1273 (m), 1241 (s), 1070 (w), 1025 (m), 754 (s), 698 (m). **Optical rotation**: \([\alpha]^{20}_{D} = +83.8 \) (c = 0.01 g mL\(^{-1}\), CHCl\(_3\)). **HRMS (DART, m/z)**: calculated for C\(_{19}\)H\(_{27}\)NOP [(M + H)\(^+\)] = 316.1835. Found: 316.1830.

(S)-1-((S)-(2-Methoxyphenyl)(phenyl)phosphanyl)-3,3-dimethylbutan-2-amine (1b). This compound was synthesized according to the general procedure using phospine borane 1b•BH\(_3\) (50 mg, 0.15 mmol) and DABCO (26 mg, 0.23 mmol, 1.5 equiv) in toluene (1.5 mL). The crude product was purified by flash chromatography on silica gel (2.5% MeOH/CH\(_2\)Cl\(_2\)) to give the pure product (20:1 d.r., 31 mg, 66%) as a colorless oil. **\(^{1}\)H NMR (400 MHz, CDCl\(_3\))**: \(\delta \) 7.57–7.49 (m, 2H), 7.37 (dp, \(J = 5.1, 1.7 \) Hz, 3H), 7.29 (ddd, \(J = 8.8, 7.8, 1.7 \) Hz, 1H), 7.01 (ddd, \(J = 6.6, 4.8, 1.7 \) Hz, 1H), 6.89 (tt, \(J = 7.4, 0.9 \) Hz, 1H), 6.84 (ddd, \(J = 8.0, 4.4, 0.8 \) Hz, 1H), 3.80 (s, 3H), 2.43 (ddd, \(J = 11.4, 9.7, 1.7 \) Hz, 1H), 2.36 (ddd, \(J = 13.7, 5.7, 1.7 \) Hz, 1H), 1.90 (br, 2H), 1.89 (ddd, \(J = 13.6, 11.5, 4.6 \) Hz, 1H), 0.87 (s, 9H). **\(^{13}\)C NMR (100 MHz, CDCl\(_3\))**: \(\delta \) 160.8 (d, \(J = 13.3 \) Hz), 136.7 (d, \(J = 12.1 \) Hz), 134.1 (d, \(J = 19.8 \) Hz), 132.2 (d, \(J = 3.0 \) Hz), 129.9, 129.2, 128.5 (d, \(J = 8.1 \) Hz), 127.7 (d, \(J = 14.0 \) Hz), 121.0 (d, \(J = 2.2 \) Hz), 110.5 (d, \(J = 1.4 \) Hz), 100.1, 57.7 (d, \(J_{CP} = 13.0 \) Hz), 55.7, 35.0 (d, \(J_{CP} = 6.0 \) Hz), 30.4 (d, \(J_{CP} = 10.2 \) Hz), 26.1. **\(^{31}\)P NMR (160 MHz, CDCl\(_3\))**: \(\delta \) –29.94. **IR (neat, cm\(^{-1}\))**: 2954 (m), 1584 (m), 1573 (m), 1463 (s), 1431 (s), 1362 (w), 1271 (w), 1239 (s), 1069 (w), 1024 (s), 793 (w), 745 (s), 727 (m), 696 (s). **Optical
rotation: $[\alpha]^{25}_{D, 89} = +10.3$ (c = 0.01 g mL$^{-1}$, CHCl$_3$). HRMS (DART, m/z): calculated for C$_{19}$H$_{27}$NOP [(M + H)$^+$]: 316.1836. Found: 316.1830.

General Procedure for the Synthesis of Phosphinothioureas.

To an oven-dried 2-dram vial equipped with a magnetic stirring bar was added the P-chiral aminophosphine. CH$_2$Cl$_2$ (0.03 M) was added, followed by isothiocyanate (1.1 equiv). The vial was sealed and stirred at 23 °C overnight. The crude product was purified by flash chromatography on silica gel using a positive pressure of N$_2$ and solvents pre-sparged with N$_2$ to give the pure product.

1-((S)-1-((R)-(2-Methoxyphenyl)(phenyl)phosphanyl)-3,3-dimethylbutan-2-yl)-3-(4-nitrophenyl)thiourea (10a). This compound was synthesized according to the general procedure using aminophosphine 1a (46 mg, 0.14 mmol) and 4-nitrophenyl isothiocyanate (29 mg, 0.16 mmol) in CH$_2$Cl$_2$ (5 mL). The crude product was purified by flash chromatography on silica gel using a positive pressure of N$_2$ and solvents pre-sparged with N$_2$ (17–20% EtOAc/hexanes) to give the pure product (37 mg, 53%) as a yellow amorphous solid.

1H NMR (400 MHz, Methanol-d_4): δ 8.16 (d, $J = 9.2$ Hz, 2H), 7.81 (d, $J = 9.1$ Hz, 2H), 7.49 (ddd, $J = 9.3$, 6.1, 2.3 Hz, 2H), 7.34 (td, $J = 7.7$, 1.4 Hz, 1H), 7.27–7.26 (m, 3H), 7.18 (td, $J = 7.2$, 1.4 Hz, 1H), 6.98–6.89 (m, 2H), 3.74 (s, 3H), 3.13 (d, $J = 0.7$ Hz, 1H), 2.81 (dt, $J = 15.0$, 2.4 Hz, 1H), 2.09 (dt, $J = 25.7$, 15.2 Hz, 1H), 1.04 (s, 9H). **13C NMR (125 MHz, Methanol-d_4):** δ 182.2, 162.6 (d, $J = 10.0$ Hz), 147.6, 144.0, 134.3 (d, $J = 20.0$ Hz), 134.2 (d, $J = 11.0$ Hz), 131.4, 129.5, 129.3 (d, $J = 7.0$ Hz), 125.1, 121.8, 121.8 (d, $J = 4.0$ Hz), 111.8, 61.2 (d, $^2J_{CP} = 15.0$ Hz), 55.9, 52.5, 37.5 (d, $^3J_{CP} = 8.0$ Hz), 30.1 (d, $^1J_{CP} = 13.0$ Hz), 26.9. **31P NMR (160 MHz, Methanol-d_4):** δ -26.38. **IR (neat, cm$^{-1}$):** 2962 (w), 1595 (m), 1499 (m), 1432 (s), 1329 (s), 1273 (s), 1237 (s), 1177 (m),...
1110 (m), 1021 (m), 850 (m), 749 (s), 696 (s). **Optical rotation:** $\left[\alpha\right]_{20}^{2089} = -44.3$ ($c = 0.01$ g mL$^{-1}$, CHCl$_3$). **HRMS (DART, m/z):** calculated for C$_{26}$H$_{31}$N$_3$O$_3$PS [(M + H)$^+$]: 496.1821. Found: 496.1824.

1-(3,5-Bis(trifluoromethyl)phenyl)-3-((S)-1-((R)-(2-methoxyphenyl)(phenyl)phosphanyl)-3,3-dimethylbutan-2-yl)thiourea (11a). This compound was synthesized according to the general procedure using aminophosphine 1a (46 mg, 0.14 mmol) and 3,5-bis(trifluoromethyl)phenyl isothiocyanate (43 mg, 0.16 mmol) in CH$_2$Cl$_2$ (5 mL). The crude product was purified by flash chromatography on silica gel using a positive pressure of N$_2$ and solvents pre-sparged with N$_2$ (14–20% EtOAc/hexanes) to give the pure product (50 mg, 61%) as a white amorphous solid.

1H NMR (400 MHz, Methanol-d_4): δ 8.10 (s, 2H), 7.59 (s, 1H), 7.50 (td, $J = 8.0, 1.6$ Hz, 2H), 7.37–7.21 (m, 4H), 7.14 (td, $J = 6.8, 1.6$ Hz, 1H), 6.97–6.86 (m, 2H), 3.75 (s, 3H), 2.79 (dt, $J = 14.4, 2.0$ Hz, 1H), 2.12 (dd, $J = 14.3, 11.4$ Hz, 1H), 1.04 (s, 9H).

13C NMR (125 MHz, Methanol-d_4): δ 182.7, 162.6 (d, $J_{CP} = 11.3$ Hz), 143.2, 139.6, (d, $J = 12.5$ Hz), 134.5 (d, $J = 20.0$ Hz), 134.1 (d, $J = 11.3$ Hz), 132.4 (d, $J = 33.8$ Hz), 131.4, 129.5, 129.2 (d, $J = 7.5$ Hz), 127.7 (d, $J = 15.0$ Hz), 124.8 (d, $J = 270.0$ Hz), 123.3 (m), 121.8 (d, $J = 3.8$ Hz), 117.3 (m), 111.8, 61.4 (d, $J_{CP} = 16.3$ Hz), 55.9, 37.4 (d, $J_{CP} = 8.8$ Hz), 29.9 (d, $J_{CP} = 13.8$ Hz), 26.9. **31P NMR (160 MHz, Methanol-d_4):** δ –22.48. **19F NMR (376 MHz, Methanol-d_4):** δ –60.53. **IR (neat, cm$^{-1}$):** 2969 (w), 2938 (w), 1533 (m), 1496 (m), 1340 (w), 1276 (s), 1237 (m), 1173 (s), 1129 (s), 1023 (m), 954 (m), 884 (m), 749 (m), 697 (m). **Optical rotation:** $\left[\alpha\right]_{20}^{589} = +16.3$ ($c = 0.01$ g mL$^{-1}$, CHCl$_3$). **HRMS (DART, m/z):** calculated for C$_{28}$H$_{30}$F$_6$N$_2$OPS [(M + H)$^+$]: 587.1713. Found: 587.1721.

1-((S)-1-((S)-(2-Methoxyphenyl)(phenyl)phosphanyl)-3,3-dimethylbutan-2-yl)-3-(4-nitrophenyl)thiourea (10b). This compound was synthesized according to the general
procedure using aminophosphine 1b (53 mg, 0.17 mmol) and 4-nitrophenyl isothiocyanate (35 mg, 0.19 mmol) in CH$_2$Cl$_2$ (6 mL). The crude product was purified by flash chromatography on silica gel using a positive pressure of N$_2$ and solvents pre-sparged with N$_2$ (17–20% EtOAc/hexanes) to give the pure product (46 mg, 55%) as a yellow amorphous solid. 1H NMR (400 MHz, Methanol-d_4): δ 8.22–8.15 (m, 2H), 7.89 (d, J = 9.2 Hz, 2H), 7.55 (tq, J = 6.2, 2.7, 2.1 Hz, 3H), 7.35 – 7.27 (m, 4H), 7.21 (ddd, J = 7.6, 5.6, 1.4 Hz, 1H), 6.96–6.87 (m, 2H), 4.62 (td, J = 10.0, 2.0 Hz, 1H), 3.71 (s, 3H), 2.47 (dt, J = 13.9, 2.7 Hz, 1H), 2.29 (ddd, J = 14.1, 11.5, 2.8 Hz, 1H), 0.98 (s, 9H). 13C NMR (125 MHz, Methanol-d_4): δ 182.6, 162.4 (d, J = 11.0 Hz), 147.7, 134.6 (d, J = 20.0 Hz), 133.8 (d, J = 10.0 Hz), 131.3, 129.7, 129.1 (d, J = 8.0 Hz), 125.2, 122.0, 121.9 (d, J = 3.0 Hz), 111.9 (d, J = 2.0 Hz), 60.1 (d, 2J$_{CP}$ = 14.0 Hz), 56.0, 37.4 (d, 3J$_{CP}$ = 7.0 Hz), 30.2 (d, 1J$_{CP}$ = 12.0 Hz), 26.9. 31P NMR (160 MHz, Methanol-d_4): δ –30.67. IR (neat, cm$^{-1}$): 2962 (w), 1596 (m), 1509 (m), 1431 (s), 1398 (s), 1293 (s), 1243 (m), 1179 (w), 1111 (w), 1023 (w), 851 (w), 752 (m). Optical rotation: [α]$^\circ_{D}^{20}$ = +5.5 (c = 0.01 g mL$^{-1}$, CHCl$_3$). HRMS (DART, m/z): calculated for C$_{26}$H$_{31}$N$_3$O$_3$PS [(M + H)$^+$]: 496.1816. Found: 496.1824.

1-(3,5-Bis(trifluoromethyl)phenyl)-3-((S)-1-((S)-(2-methoxyphenyl)(phenyl)phosphany)-3,3,3-dimethylbutan-2-yl)thiourea (11b). This compound was synthesized according to the general procedure using aminophosphine 1b (53 mg, 0.17 mmol) and 3,5-bis(trifluoromethyl)phenyl isothiocyanate (52 mg, 0.19 mmol) in CH$_2$Cl$_2$ (6 mL). The crude product was purified by flash chromatography on silica gel using a positive pressure of N$_2$ and solvents pre-sparged with N$_2$ (14–20% EtOAc/hexanes) to give the pure product (65 mg, 65%) as a white amorphous solid. 1H NMR (400 MHz, Methanol-d_4): δ 8.20 (s, 2H), 7.61 (s, 1H), 7.54 (m, 2H), 7.37–7.27 (m, 4H), 7.23 (t, J = 6.8 Hz, 1H), 6.96–6.85 (m, 2H), 4.65 (td, J = 10.5,
2.2 Hz, 1H), 3.71 (s, 3H), 2.47 (dt, J = 13.8, 2.7 Hz, 1H), 2.33 (ddd, J = 13.8, 11.4, 2.1 Hz, 1H), 0.99 (s, 9H). 13C NMR (125 MHz, Methanol-d_4): δ 183.2, 162.5 (d, J = 10.0 Hz), 143.4, 139.4 (d, J = 11.3 Hz), 134.5 (d, J = 18.8 Hz), 133.9 (d, J = 10.0 Hz), 132.4 (q, $^2J_{CF}$ = 32.5 Hz), 131.3, 129.6, 129.1 (d, J = 7.5 Hz), 127.9 (d, J = 13.8 Hz), 124.8 (q, $^1J_{CF}$ = 270.0 Hz), 123.4 (m), 121.9 (d, J = 3.8 Hz), 117.3 (m), 111.9, 60.2 (d, $^2J_{CP}$ = 13.8 Hz), 55.9, 37.4 (d, $^3J_{CP}$ = 7.5 Hz), 30.0 (d, $^1J_{CP}$ = 11.2 Hz), 26.9. 31P NMR (160 MHz, Methanol-d_4): δ –22.06. IR (neat, cm$^{-1}$): 2961 (w), 1596 (w), 1506 (s), 1434 (s), 1274 (s), 1165 (s), 1127 (s), 744 (m), 882 (m).

Optical rotation: $[\alpha]_{D}^{20} = +50.8 \, (c = 0.01 \, \text{g mL}^{-1}, \text{CHCl}_3)$. HRMS (DART, m/z): calculated for C$_{28}$H$_{30}$F$_6$N$_2$OPS [(M + H)$^+$]: 587.1726. Found: 587.1721.

(S)-1-(1-(Diphenylphosphanyl)-3,3-dimethylbutan-2-yl)-3-(4-nitrophenyl)thiourea (10c).

This compound was synthesized according to the general procedure using (S)-1-(diphenylphosphanyl)-3,3-dimethylbutan-2-amine11 (73 mg, 0.26 mmol) and 4-nitrophenyl isothiocyanate (52 mg, 0.29 mmol) in CH$_2$Cl$_2$ (9 mL). The crude product was purified by flash chromatography on silica gel using a positive pressure of N$_2$ and solvents pre-sparged with N$_2$ (14–20% EtOAc/hexanes) to give the pure product (76 mg, 63%) as a white amorphous solid. 1H NMR (300 MHz, Methanol-d_4): δ 8.21–8.12 (m, 2H), 7.87 (d, J = 9.1 Hz, 2H), 7.57–7.40 (m, 4H), 7.37–7.20 (m, 6H), 4.72 (ddd, J = 11.8, 9.6, 2.1 Hz, 1H), 2.57 (dt, J = 14.2, 2.7 Hz, 1H), 2.15 (ddd, J = 13.9, 11.7, 2.0 Hz, 1H), 0.99 (s, 9H). 13C NMR (125 MHz, Methanol-d_4): δ

182.6, 147.7, 144.1, 140.6 (d, $^1J_{CP}$ = 12.5 Hz), 140.3 (d, $^1J_{CP}$ = 13.8 Hz), 134.3 (d, $^2J_{CP}$ = 18.8 Hz), 133.8 (d, $^2J_{CP}$ = 20.0 Hz), 129.8, 129.5, 129.4 (d, $^3J_{CP}$ = 6.3 Hz), 129.3 (d, $^3J_{CP}$ = 7.5 Hz), 125.2, 122.0, 60.4 (d, $^2J_{CP}$ = 15.0 Hz), 37.4 (d, $^3J_{CP}$ = 7.5 Hz), 32.4 (d, $^1J_{CP}$ = 13.8 Hz), 26.9. 31P NMR (120 MHz, Methanol-d_4): δ –22.06. IR (neat, cm$^{-1}$): 2962 (w), 1596 (w), 1506 (s), 1434.
(w), 1325 (s), 1302 (s), 1258 (m), 1245 (m), 1175 (m), 1110 (m), 849 (m), 740 (s), 693 (s).

Optical rotation: $[\alpha]^{20}_{589} = +51.4$ (c = 0.03 g mL$^{-1}$, CHCl$_3$). **HRMS (DART, m/z):** calculated for C$_{23}$H$_{29}$N$_3$O$_2$PS [(M + H)$^+$]: 466.1716. Found: 466.1718.

General Procedure for the Morita-Baylis-Hillman Reaction.

Methyl (R)-2-(Hydroxyl(phenyl)methyl)acrylate (12). To an oven-dried 2-dram vial equipped with a magnetic stirring bar was added thiourea catalyst 10a (5.0 mg, 0.01 mmol) in the glovebox. 5 Å molecular sieves (50 mg) and methyl acrylate (13 mg, 0.15 mmol) were added. THF (0.3 mL) was then added. Benzaldehyde (5.2 mg, 0.05 mmol) was added and the vial was sealed. The reaction was stirred at 23 °C for 72 h and then filtered over a short plug of celite. The filtrate was concentrated in vacuo to give the crude product that was purified by flash chromatography on silica gel (13–17% EtOAc/hexanes) to give the pure product (5.0 mg, 57%) as a colorless oil. The enantiomeric excess was 76%, as judged by HPLC with a chiral stationary phase. Characterization data were consistent with those reported previously.21a

1H NMR (400 MHz, CDCl$_3$): δ 7.40–7.31 (m, 4H), 7.31–7.25 (m, 1H), 6.33 (s, 1H), 5.84 (s, 1H), 5.56 (d, $J = 4.9$ Hz, 1H), 3.71 (s, 3H), 3.14 (d, $J = 5.5$ Hz, 1H). **13C NMR (100 MHz, CDCl$_3$):** δ 166.9, 142.1, 141.4, 128.6, 128.0, 126.7, 126.2, 73.4, 52.1. **Optical rotation:** $[\alpha]^{20}_{589} = -7.2$ (c = 0.003 g mL$^{-1}$, CHCl$_3$). Lit. (S enantiomer, 75% ee): +47.3 (c = 0.1, CHCl$_3$).37 **HPLC conditions:** Chiralpak IB, 2.0% isopropanol/hexanes, 0.75 mL/min, 254 nm, t_1: 23.75 and 25.66 min.

Methyl (R)-2-((4-Bromophenyl)(hydroxyl)methyl)acrylate (13). This compound was synthesized according to the general procedure using catalyst 10a (5.0 mg, 0.01 mmol), methyl acrylate (13 mg, 0.15 mmol), and 4-bromobenzaldehyde (9.3 mg, 0.05 mmol) in THF (0.3 mL). The crude product was purified by chromatography on silica gel (10–17% EtOAc/hexanes) to give the pure product (11 mg, 80%) as a colorless oil. The enantiomeric excess was 81%, as
judged by HPLC with a chiral stationary phase. Characterization data were consistent with those reported previously.21a \textbf{1H NMR (400 MHz, CDCl3):} \(\delta 7.50–7.42\) (m, 2H), 7.27–7.21 (m, 2H), 6.33 (s, 1H), 5.83 (s, 1H), 5.49 (d, \(J = 5.2\) Hz, 1H), 3.72 (s, 3H), 3.18 (d, \(J = 5.6\) Hz, 1H). 13C NMR (100 MHz, CDCl3): \(\delta 166.7, 141.7, 140.5, 131.6, 128.4, 126.5, 121.9, 72.8, 52.2\).

Optical rotation: \([\alpha]_{589}^{20} = +2.9\) (c = 0.006 g mL\(^{-1}\), CHCl\(_3\)). Lit. (83% ee): +7.9 (c = 1.0, CHCl\(_3\)).21a \textbf{HPLC conditions:} Chiralcel OD-H, 0.8% isopropanol/hexanes, 210 nm, 1.0 mL/min, \(t_r\): 44.45 and 49.92 min.

\textbf{Methyl (\(R\)-2-(Hydroxy(p-tolyl)methyl)acrylate (14).} This compound was synthesized according to the general procedure using catalyst 10a (5.0 mg, 0.01 mmol), methyl acrylate (13 mg, 0.15 mmol), and \(p\)-tolualdehyde (6.0 mg, 0.05 mmol) in THF (0.3 mL). The crude product was purified by chromatography on silica gel (10–17% EtOAc/hexanes) to give the pure product (4.2 mg, 41%) as a colorless oil. The enantiomeric excess was 73%, as judged by HPLC with a chiral stationary phase. Characterization data were consistent with those reported previously.21a \textbf{1H NMR (400 MHz, CDCl3):} \(\delta 7.26\) (d, \(J = 8.1\) Hz, 2H), 7.15 (d, \(J = 8.1\) Hz, 2H), 6.33 (s, 1H), 5.85 (s, 1H), 5.53 (s, 1H), 3.72 (s, 3H), 2.95 (s, 1H), 2.34 (s, 3H). 13C NMR (100 MHz, CDCl3): \(\delta 166.9, 142.2, 138.5, 137.7, 129.3, 126.6, 126.0, 73.3, 52.0, 21.3\). Optical rotation: \([\alpha]_{589}^{20} = -13.4\) (c = 0.002 g mL\(^{-1}\), CHCl\(_3\)). Lit (83% ee): −57.4 (c = 0.54, CHCl\(_3\)).21a \textbf{HPLC conditions:} Chiralpak IB, 2.0% isopropanol/hexanes, 0.5 mL/min, 254 nm, \(t_r\): 29.84 and 32.29 min.

\textbf{Computational Methods.} DFT calculations were carried out using the Gaussian 09 suite of programs,38 at the B3LYP/6-31G(d,p) level of theory.39 Vibrational frequency calculations were carried out to ensure that the obtained structures are minima on the potential energy surface (no imaginary frequencies). Frequency calculations were carried out at 1 atm and 298.15 K. Structures were visualized using Avogadro 1.2.0.
AUTHOR INFORMATION

Corresponding Author

* E-mail: mtaylor@chem.utoronto.ca

ORCID

Mark S. Taylor: 0000-0003-3424-4380

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Dr. Alan K. Lough (University of Toronto) is gratefully acknowledged for carrying out the single crystal X-ray diffraction experiments and solving the structures of (S,Rp)-8a•HCl and (S,Sp)-9b•BH₃. Graham Garrett is acknowledged for assistance and advice related to the computational modeling. Acknowledgement is made to the donors of the American Chemical Society Petroleum Research Fund for partial support of this research. Funding was also provided by NSERC (Discovery Grants and Canada Research Chairs Programs) and the Canada Foundation for Innovation (Projects #17545 and 19119). The DFT calculations were carried out at the Centre for Advanced Computing (http://cac.queensu.ca).

ASSOCIATED CONTENT

Supporting Information. Copies of ¹H, ¹³C and ³¹P NMR spectra. Crystallographic information files (CIF) for (S,Rp)-8a•HCl and (S,Sp)-9b•BH₃. Cartesian coordinates and energies of calculated structures. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES

Johansson, M. J.; Andersson, K. H. O.; Kann, N. J. Org. Chem. **2008**, *73*, 4458–4463. (g)

09, Gaussian, Inc.: Wallingford, CT, USA, 2009.