Fig. S1. 1D 1H spectra of apelin-13 (Ap13) and apelin-17 (Ap17) in the presence of q=0.5 DMPC:DHPC (PC) and DMPC:DMPG:DHPC (PC-PG) bicelles acquired at 37 °C. Peptide (0.5 mM) signals are obscured by much larger signals from the lipids (150 mM).
Fig. S2. 1D 31P solid-state NMR spectra of magnetically-oriented q=3 DMPC:DHPC (PC) bicelles in presence of apelin-13 (Ap13) at 16.4 T after incubation for indicated time period.
Fig. S3. Aliphatic resonance regions of 1D 1H spectra of indicated q=0.5 bicelles in the absence or presence of apelin-13 (Ap13) or apelin-17 (Ap17). Bicelle acyl-chain and headgroup CH$_3$ moieties used for DOSY-based D$_C$ determination are indicated.
Supplementary material for Sarker, Speckert & Rainey “Bicelle composition-dependent
modulation of phospholipid dynamics by apelin peptides.”

Fig. S4. 1H DOSY spectra of pure bicelles and signal attenuation fits for D_C calculation.
Fig. S5. 31P DOSY spectra of pure bicelles and signal attenuation fits for D_C calculation. Greater data scatter is apparent for the much less intense PG headgroup.
Fig. S6. 1H DOSY spectra of apelins in aqueous condition and signal attenuation fits for D_c calculation. As expected, the larger Ap17 exhibits slower diffusion than Ap13, indicated by higher positioning of its DOSY signals (red bars).
Fig. S7. 1H diffusion coefficient (D_C) values for DSS as obtained by DOSY NMR in the presence of apelin-13 (Ap13) or apelin-17 (Ap17) in 90% H$_2$O/10% D$_2$O and/or in the presence of q=0.5 DMPC:DHPC (PC) or DMPC:DMPG:DHPC (PC-PG) bicelles determined at 37 °C.