Adsorption and Diffusion of Lithium Polysulfides over Blue Phosphorene for Li-S batteries

Sankha Mukherjee, Lance Kavalsky, Kinnor Chattopadhyay, and Chandra Veer Singh

Version Post-print/accepted manuscript

Citation (published version) S. Mukherjee, L. Kavalsky, K. Chattopadhyay and C. V. Singh, Nanoscale, 2018, DOI: 10.1039/C8NR04868A.

How to cite TSpace items

Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the author manuscript from TSpace because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page.

This article was made openly accessible by U of T Faculty. Please tell us how this access benefits you. Your story matters.
Adsorption and Diffusion of Lithium Polysulfides over Blue Phosphorene for Li-S batteries

Sankha Mukherjee, Lance Kavalsky, Kinnor Chattopadhyay and Chandra Veer Singh

a. Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
b. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada

*corresponding author email: chandraveer.singh@utoronto.ca

Keywords: Lithium-sulfur battery, Blue phosphorene, Density functional theory, NEB, Lithium polysulfides, Diffusion

Abstract:

Lithium-sulphur (Li-S) batteries suffer from capacity loss due to the dissolution of lithium polysulfides (LiPSs). While finding cathodes which can trap LiPSs strongly is a possible solution to suppress the “shuttle” effect, fast diffusion of lithium and LiPSs is also pivotal to prevent agglomeration. We report that monolayer blue phosphorene (BP), a recently synthesized two-dimensional material, possesses these characteristics as a cathode in Li-S batteries. Density functional theory calculations show that while the adsorption energies (E_b) of various LiPSs over pristine BP are reasonably strong (from -0.86 eV to -2.45 eV), defect engineering the lattice by introducing a single vacancy (SV) increased the binding strength significantly, with E_b in the range -1.41 eV to -4.34 eV. Molecular dynamic simulations carried out at 300 K showed that the single vacancies trap the Li atoms in the LiPSs compared to pristine BP. Projected density of states revealed that creation of an SV induces metallicity in the cathode. Furthermore, increase in the adsorption strength did not cause significant structural deformation, implying that the soluble large LiPSs did not decompose which is essential to suppress capacity fading. The energy barriers for LiPSs migration over pristine BP are minimal to ensure ultrafast diffusion, with the lowest diffusion energy barriers being 0.23 eV, 0.13 eV and 0.18 eV for Li$_2$S$_4$, Li$_2$S$_6$ and Li$_2$S$_8$, respectively. Furthermore, the energy barrier associated with the catalytic oxidation of Li$_2$S over pristine and defective BP were found to be less than three times smaller than graphene, which suggests that charging processes could be faster by orders of magnitude. Therefore, BP with a suitable combination of defects would be an excellent cathode material in Li-S batteries.
Introduction:

Lithium-Sulfur (Li-S) batteries are a viable option for large-scale rechargeable energy-storage systems because their cheap, render high energy density and are less toxic than current offerings. However, there are several challenges which currently limit their large-scale commercialization, such as capacity fading and moderate cycle performance, poor stability of anode and active material loss in the cathode. In a Li-S battery during discharge, the Li$^+$ ions migrate from the anode to the cathode and reduce the cyclooctasulfur (S_8) molecules residing in the cathode to form polar lithium polysulfides (Li_2S_x, $1 \leq x \leq 8$). These resulting polysulfides can be either soluble ($3 \leq x \leq 8$) or insoluble ($x=1,2$) in the liquid electrolyte. Because of the formation of these discharge products, the cathode undergoes several compositional, and structural alterations causing mechanical disintegration and critical capacity fading. Furthermore, the Sulfur containing carbonaceous cathodes are poor binders of the soluble polysulfides. Consequently, during discharge, these soluble polysulfides get dissolved into the electrolyte, migrate to the anode resulting in redeposition, thereby constructing a passivation layer, a phenomenon commonly known as the shuttle effect. These side-reactions result in a low Coulombic efficiency and short life. Additionally, the carbonaceous cathode and the final discharge product (Li_2S) both act as insulators, causing passivation of the cathode for electrochemical reactions.

Over the past decade, efforts have been made to address some of these issues for large-scale commercial realization of Li-S cells. Recently, Lee et al. showed that while electrolytes such as ACN:LiTFSI permit the migration of Li ions, they inhibit the shuttle effect by selectively suppressing the dissolution of LiPSs. On the cathode side, hollow carbon spheres of sulfur containing composites, nanoporous carbon, and carbon nanofibers were tried to bind the lithium polysulfides (LiPSs) on the cathodic host. In general, an ideal cathodic host should be a conductive material and able to strongly adsorb lithium polysulfides (the binding energies of Li_2S_x species on the anchoring should be greater than 0.8 eV) to avoid their dissolution in the electrolyte, thereby inhibiting the shuttle effect. Additionally, the cathodic material should allow ultrafast diffusion of ions and LiPSs to promote conversion of adsorbed large LiPSs to insoluble Li_2S_2/Li_2S and attain efficient Sulfur utilization. In this context, the emergence two-dimensional (2D) materials is significant due to their unique structural (large electrochemical active surface, large number of adsorption sites for uniform adsorption of LiPSs and deposition of Li_2S_2/Li_2S), and electrical and mechanical properties. Recently, it has been shown that the incorporation of 2D materials (graphene, ReS$_2$, Ti$_3$C$_2$ and Ti$_3$CN) in the cathode matrix can significantly improve the performance of Li-S batteries. For example, Li et al. demonstrated that Li-S cells utilizing black phosphorene possess a capacity of 660 mAhg$^{-1}$ with only 0.053% capacity fade, whereas those without show 0.25% capacity fade after 200 cycles; DFT simulations indicated that this improvement in performance was due to the stronger interaction between black phosphorene and the polysulfides. These experimental studies have inspired theorists to study several other 2D materials for their potential use as a component in the cathodes for Li-S batteries. However, much remains unexplored due to the rapidly growing catalogue of 2D materials. For example, theoretical calculations have so far predicted more than 21 two-dimensional polymorphs for phosphorus, commonly known as phosphorene. Blue phosphorene, another 2D polymorph of P, was first theoretically predicted in 2014, followed...
by successful synthesis using molecular beam epitaxy \(^{21,22}\) and has a puckered surface similar to the structure of Silicene and Germanene. First principles investigations have studied the suitability of monolayer BP for alkali-meta-ion batteries \(^{23}\), and BP/Graphene, BP/NbS\(_2\) and BP/TaS\(_2\) \(^{24}\) heterostructures as electrodes in Lithium-ion Batteries. Based on these theoretical estimates, the applicability of pristine monolayer BP as a cathode in Li-S batteries is worth exploring.

Attempts have been made to modify the electronic properties of 2D materials for increasing their interaction strength with the LiPSs, such as heteroatom doping and defect engineering. For example, it was demonstrated using both experiments and first principles based simulations that N-doped graphene with pyrrolic and pyridinic N-dopants bind polysulfides stronger than pristine graphene\(^{25-26}\). Additionally, amino-functionalized reduced graphene oxide \(^{27}\) and lithium trapped N-doped graphene \(^{28}\) have also been reported to possess strong interactions with the LiPSs. Similarly, crystallographic defects (such as point defects, grain boundaries), which are formed during the synthesis of 2D materials from their bulk structures using deposition techniques or exfoliation, can significantly alter the electronic properties of the material. Yet, our understanding of how different crystallographic defects in 2D materials affect the performance Li-S batteries is incomplete. Thus far, lion’s share of the efforts has been dedicated towards understanding the effect of defects on the performance of Li-S batteries containing graphene as cathode\(^{29-31}\). For example, Zhao et al. \(^{30}\) have predicted that defective graphene helps to trap S due to the electronic and geometric effects. They also suggest that defects can help distribute S atoms uniformly over the cathode, and in effect reduce the chemical activity of S. Furthermore, Panahian et al. \(^{31}\) reported that due to the strong interactions between defective graphene and polysulfides, one S atom is detached from the polysulfide molecule and, forming Li\(_2\)S\(_{\text{x-1}}\) molecule, which binds softly over the S-doped graphene host. On the other hand, a recent article by Jian et al. reported that defective borophene reduces the adsorption strength of LiPSs compared to pristine Borophene and supresses the decomposition of LiPSs \(^{32}\). Questions such as, whether BP with defects can trap polysulfides and what are the underlying mechanisms of interactions remain unanswered.

To determine monolayer pristine and defective BPs capability as a cathode in Li-S batteries, we investigated the adsorption of various LiPSs on BP using extensive density functional theory calculations. First, favorable sites for the adsorption of the LiPSs over pristine BP were determined. To study the effect of defects on LiPSs binding, monolayer BP with single vacancy was investigated. In addition, Climbing Image–Nudged Elastic Band (CI-NEB) simulations were employed to determine the minimum energy pathways and the diffusion energy barriers for transport of Li atom and polysulfides over pristine BP. The results presented in this study demonstrate that monolayer BP is well-suited as a positive electrode for next-generation Li-S batteries.

Computational Details

Plane-wave based density functional theory calculations were performed using the Quantum Espresso\(^{33}\) software package. Projector augmented wave (PAW) method\(^3\) with Perdew–Burke–Ernzerhof (PBE) formulation was used to capture the interactions between
valence electrons and the ionic cores, and approximate the exchange correlation term respectively. The structure of BP was obtained using a kinetic energy cutoff of 70 Ry (~952 eV) for the wave functions and 350 Ry (~4761 eV) for the charge densities, respectively. A vacuum of 20 Å was used to eliminate spurious interlayer interactions due to periodicity, and the convergence criterion for the self-consistent field was set to be 1×10^{-6} Ry. The primitive cell of free-standing monolayer BP was obtained using a Broyden–Fletcher–Goldfarb–Shanno algorithm over a $13 \times 13 \times 1$ Monkhorst–Pack grid of k-points with the residual Hellman–Feynman force on each atom less than 0.0001 Ry per Bohr, and the total energy converged less than 5×10^{-5} Ry. A $4 \times 4 \times 1$ Monkhorst–Pack grid of k-points was used for optimizing the structure of pristine BP supercell which contained 5×5 primitive cells (with 50 atoms) and the adsorption energy. The DFT-D2 approach, was utilized to accurately account for long-range van der Waals (vdw) forces. Bader charge analysis was performed to quantify the charge transfer process during LiPSs adsorption. Additionally, the binding energy (E_b) and charge density difference (ρ_b) were determined by,

$$E_b = E_{\text{Adsorbed state}} - (E_{\text{Adsorbent}} + E_{\text{BP}}),$$

$$\rho_b = \rho_{\text{Adsorbed state}} - (\rho_{\text{Adsorbent}} + \rho_{\text{BP}}),$$

where $E_{\text{Adsorbed state}}$ is the energy of BP after the adsorption of LiPSs, $E_{\text{Adsorbent}}$ is the energy of isolated LiP molecules, and E_{BP} is the energy of pristine and defective BP. A negative E_b indicates that the adsorption of the LiPSs is energetically favored. Similarly, $\rho_{\text{Adsorbed state}}$ is the charge density of BP after the adsorption of the LiPSs, $\rho_{\text{Adsorbent}}$ is the charge density of isolated LiPSs molecules, and $\rho_{\text{Substrate}}$ is the charge density of pristine and defective BP. Variable-cell ab-initio molecular dynamics (AIMD) simulations were utilized to assess the thermodynamic stability of BP primitive cell. For the AIMD calculations, velocity rescaling scheme was utilized to keep the temperature at 300 K with a time step of 2 fs for relaxation. Climbing image nudged elastic band (CI-NEB) method was used to obtain estimates of energy barriers for the diffusion of Li and LiPSs over BP.

Results and Discussion

Structural properties of the reactants

The relaxed structure of monolayer BP supercell used for the calculations is shown in Figure 1a, the primitive cell is shown using black lines. The lattice constants of the primitive cell were found to be: $a_1 = a_2 = 3.28 \, \text{Å}$ which agree well with previous reports ($3.28 \, \text{Å}$, $3.268 \, \text{Å}$). In BP, each P atom is covalently bonded with three P neighbors, having a P-P bond length of 2.26 Å and bond angle of 93°. A single P atom was removed from the BP supercell and the structure was optimized at ground state to obtain the defective structure (Figure 1b). AIMD simulations were performed to assess the thermodynamic stability of single vacancy (SV) supercell at 300 K and the time traces of temperature and potential energy are shown in Figure 1c. The formation energy of a single vacancy in blue phosphorene (SVBP) is given by the relation,
where E_{defect} and E_{pristine} are the total energies of the defective and pristine BP supercells, respectively, N is the number of P atoms in the pristine supercell, and i is the number of P atoms removed from the pristine supercell to create the defect. The formation energy of a SV in BP at ground state is 2.42 eV, 0.79 eV smaller than silicene39 and 5.43 eV smaller than graphene40. The areal density of a certain defect at finite a temperature T is related to its formation energy by an Arrhenius type equation given by,

$$N_{\text{defect}} = N_{\text{pristine}} \exp\left(-\frac{E_f}{k_B T}\right) \quad (4)$$

where N_{pristine} is the areal density of atoms in the pristine material, and k_B is the Boltzmann’s constant. The areal density, N_{pristine} for graphene and silicene at ground state are 3.79×10^{19} m$^{-2}$ and 1.55×10^{19} m$^{-2}$, respectively41. The temperature dependent areal density of the most stable single vacancy defects in BP, graphene and silicene are shown in Figure 1d. It can be seen that the areal density of SV at any temperature is orders of magnitude higher in BP as compared to silicene and graphene.

As shown via the PDOS plot in Figure 1e, pristine BP is a semiconductor material with a band gap of approximately 1.95 eV. However, from the introduction of a single vacancy into the lattice this picture changes as shown in Figure 1f with states being found within the band gap around the Fermi Energy. At first, this may seem counter intuitive since the impression is given of states being added from the removal of an atom. However, the cause of this change becomes clearer when considering that electrons originally participating in bonds are now dangling and must be in a higher energy state relative to the rest of the valence band.
Figure 1: (a) Top view of pristine BP, the primitive cell of BP is shown by a pink rhombus. (b) Top view of single vacancy BP. Hollow circle represents the P atom removed from the pristine supercell to create the single vacancy. (c) Time trace of total energy and temperature of pristine BP obtained using variable cell AIMD simulation. (d) Areal densities of single vacancies in graphene, silicene and BP as a function of temperature. Electronic projected density of states of (e) pristine and (f) SV BP.
Adsorption of Li$_2$S$_x$ on pristine and defective blue phosphorene

In Li-S batteries the Li ions migrate from the anode, through the electrolyte and interact with the Sulphur-containing cathode to form various lithium polysulfide intermediates during discharge. As shown in Figure 1a, the surface of pristine BP possesses four structurally unique adsorption sites which are: (i) C-site above the center of the P-hexagon, (ii) R-site above a P atom in the ridge, (iii) B-site above the center of a P−P bond, and (iv) above the P atom along the pucker (P-site). A set of distinct translational and rotational configurations of the LiPSs were considered over these high-symmetry sites in pristine BP to find the most energetically favorable binding site. As an example, various configurations of Li$_2$S$_6$ molecules tested here are shown in Figure 2 (a-k). The adsorption energies of Li$_2$S$_6$ for all these configurations are not identical, as shown in Figure 2(l), which demonstrates the need to search for the optimal arrangement. The same method was utilized to find the most energetically stable adsorption configurations of the remaining Li polysulfides and S$_8$. The most stable adsorption configurations of all the Li polysulfides and S$_8$ versus the corresponding values of E_b are displayed in Figure 3. Additionally, some key structural parameters are presented in Table 1. It can be seen that the interaction strength of S$_8$ and the polysulfides over pristine BP are reasonably strong, with the strongest adsorption energies being: -0.51 eV for S$_8$, -0.95 eV for Li$_2$S$_8$, -0.86 eV for Li$_2$S$_6$, -1.07 eV for Li$_2$S$_4$, -1.16 eV for Li$_2$S$_3$, -1.54 eV for Li$_2$S$_2$, and -2.46 eV for Li$_2$S. These adsorption energies are much larger than pristine graphene25 and are comparable to that of black phosphorene42. The energy gain associated with the cluster formation of Li$_2$S$_x$ is significantly smaller than the adsorption energies of the LiPSs over BP. For example, the energy increase associated with the formation of soluble LiPs, i.e. Li$_2$S$_8$, Li$_2$S$_6$, and Li$_2$S$_4$ networks are 0.54 eV, 0.6 eV, and 0.8 eV43 which are much smaller than their E_b values over BP. Therefore, these LiPSs would prefer to spread over BP surface than forming networks.

Furthermore, the adsorption energy of S$_8$ is smaller than the LiPSs due to the absence of Li atoms which interact with the substrate. Additionally, an increase in binding energy with decreasing S content indicates that the discharge process over BP is favorable. Considering the most energetically favorable position, the cyclooctasulfur molecule orients itself parallel to the BP surface at a distance of 3.63 Å, this behavior is similar to black phosphorene42, N-doped and amorphous graphene$^{9, 28}$, C$_3$B44, Ti$_2$CO$_2$45. Similarly, the Li atoms in LiPSs nest near the BP surface (except for Li$_2$S and Li$_2$S$_6$) while the S atoms seat away. A previous study reported that the C-site and the P-site are the most energetically favored locations for the adsorption of Na and K over BP46. Interestingly, the Li atoms in LiPSs also locates near these two sites46. Also, the length of the shortest Li-P bond increases with increasing concentration of S in the LiPSs, because S is highly electronegative. This behavior is similar to that of black phosphorene42 and unlike β$_{12}$ borophene47. Furthermore, we analyzed the lengths of the Li-S bonds in different LiPSs after their adsorption over BP which revealed that the Li-S bond lengths increased monotonically during adsorption. For example, compared to an isolated Li$_2$S$_8$ molecule, the length of the Li-S bond in Li$_2$S$_8$ (ΔLi-S) increased by 0.025 Å after its adsorption over pristine BP. Similarly, for Li$_2$S$_4$, Li$_2$S$_3$, Li$_2$S$_2$ and Li$_2$S molecules after adsorption the Li-S bond lengths increased by 0.028 Å, 0.06 Å, 0.11 Å and 0.34 Å, respectively. The extension of the Li-S bond lengths during the discharge process is an indication of increased interaction between BP and the LiPSs which is also in agreement with the magnitudes of E_b. The increase in bond length increases with an increase in the Li:S ratio because of strong electronegativity of S compared to
the electronegativities of P and Li. In order to get insights into the bonding mechanism, we calculated the Bader partial charges38 and differential charge densities (DCD) of Li\textsubscript{2}S\textsubscript{y} (y = 1, 2, 4, 8) over BP, shown in Figure 4. Bader charge calculations indicate that as the discharge process progresses, more and more electrons are transferred from the LiPSs to the host material. For example, while for Li\textsubscript{2}S\textsubscript{4} molecule charge gained by BP is 0.01 |e|, for Li\textsubscript{2}S\textsubscript{8}, Li\textsubscript{2}S\textsubscript{6} and Li\textsubscript{2}S molecules the amount of charge transferred to BP are 0.18 |e|, 0.48 |e| and 0.66 |e|, respectively. Furthermore, DCDs of LiPSs for different discharge stages indicate that the electrons donated by the Li atoms are predominantly transferred to the S atoms in the LiPSs owing to stronger electronegativity of S (2.58) compared to P (2.19). While the P atoms in BP located close to the LiPSs mostly gain charge, the P atoms in the furrows lose charge to the S atoms. In large LiPSs (see Figure 4 c,d) the S atoms away from the BP-LiP interface gain less amount of charge compared to those close to BP.

Similar to pristine BP, a medley of translational and rotational configurations of the LiPSs were considered to find their most energetically stable adsorption sites on BP containing one SV. Unlike pristine BP for which four structurally symmetric sites were considered (see Figure 1a), for SVBP, the LiPSs were initially placed at a distance of 3 Å above the surface in the vicinity of the defective site and were allowed to relax. The most stable adsorption configurations of all the LiPSs and corresponding magnitudes of E_b are presented in Figure 5, with the strongest adsorption energy for each Li\textsubscript{2}S\textsubscript{y} molecules being: -2.11 eV for Li\textsubscript{2}S\textsubscript{8}, -1.4 eV for Li\textsubscript{2}S\textsubscript{6}, -3.13 eV for Li\textsubscript{2}S\textsubscript{4}, -2.79 eV for Li\textsubscript{2}S\textsubscript{3}, -3.27 eV for Li\textsubscript{2}S\textsubscript{2}, and -4.34 eV for Li\textsubscript{2}S. These adsorption energies are significantly larger than those for pristine BP. While the adsorption energies of Li\textsubscript{2}S\textsubscript{8}, Li\textsubscript{2}S\textsubscript{6}, Li\textsubscript{2}S\textsubscript{4} and Li\textsubscript{2}S\textsubscript{2} increased by more than 100% (124% for Li\textsubscript{2}S\textsubscript{8}, 200% for Li\textsubscript{2}S\textsubscript{6}, 148% for Li\textsubscript{2}S\textsubscript{4} and 110% for Li\textsubscript{2}S\textsubscript{2}), those for Li\textsubscript{2}S\textsubscript{6} and Li\textsubscript{2}S increased by more than 100% (65% for Li\textsubscript{2}S\textsubscript{6} and 76% for Li\textsubscript{2}S). It can be seen that the LiPSs are pulled towards the defective site, indicating that the defects act as traps for the LiPSs in a similar manner to the behavior on defective graphene31 and borophene48. Previous studies have reported that increased adsorption energies of LiPSs on 2D hosts come at the cost of irreversible structural distortions49 which can lead to the dissolution of sulfur. For example, Jan et al. reported that point defects in graphene deform the LiPSs, so much so that S atoms detach from the molecules and get adsorbed in the point defect. Such a behavior was attributed to the strong interactions caused by the localized levels of dangling bonds in under-coordinated C atoms neighboring the vacancy.50 Similarly, large adsorption energies caused by strong interaction between Striped borophene and polysulfides lead to the decomposition of the adsorbents.48 In defective BP however, P-P bonds are not broken during the entire reaction, which implies structural stability of the host. The increase in the Li-S bond lengths after binding to defective BP were larger than pristine BP. For instance, ΔL_{Li-S} for Li\textsubscript{2}S\textsubscript{6}, Li\textsubscript{2}S\textsubscript{4}, Li\textsubscript{2}S\textsubscript{3}, Li\textsubscript{2}S\textsubscript{2} and Li\textsubscript{2}S was found to be by 0.037 Å, 0.033 Å, 0.011 Å and 0.021 Å, respectively. In addition, the larger soluble LiP molecules also intact over defective BP maintaining their ring-like structures. DCDs shown in Figure 6 qualitatively show that the interaction between LiPSs and defective BP is much stronger than pristine BP. Charge donated by Li atoms is shared by both S atoms and the defective BP substrate. Interestingly, Bader charge calculations indicated that unlike pristine BP, charge is transferred from the substrate to the larger polysulfides while the smaller polysulfides donates charge to the substrate. Specifically, defective BP accepted electrons amounting to 0.738 |e|, 0.737 |e|, and 0.717 |e| from Li\textsubscript{2}S, Li\textsubscript{2}S\textsubscript{2} and Li\textsubscript{2}S\textsubscript{3}, respectively, and larger polysulfides such as Li\textsubscript{2}S\textsubscript{4}, Li\textsubscript{2}S\textsubscript{6} and Li\textsubscript{2}S\textsubscript{8} accepted 1.12 |e|, 0.02 |e|, and 0.12 |e| from BP.
The stability of the LiPSs over pristine and SV blue phosphorene surfaces at 300 K was studied using AIMD simulations to account for thermal effects. These thermodynamic stabilities were assessed by plotting the time-traces of temperature and total energies (Figure S1, S2) and ensuring that no major deviations from equilibrium occurred. The dynamic evolution of the systems is visualized in Supplementary Movie 1-12. It can be seen from these video files that structural distortions to the LiPSs were larger on pristine BP compared to when an SV is present. Over pristine BP, the Li atoms predominantly hop over the C and P sites. Additionally, the LiPSs frequently migrate over to the neighboring hexagonal units, maintaining their structural shape. Furthermore, the rotational and translational motions of the larger LiPSs were found to be less pronounced than the smaller LiPSs. Comparatively, the defective site in SVBP acts as an entrapment for the Li atoms and the LiPSs are stuck to the substrate. This is further evidenced through the greater restriction in their movement relative to the pristine case, thereby signaling increased trapping behavior via defect’s presence.

In order to assess the relative strengths of chemical and van der Waals interaction, the ratio of vdw interactions (R) was calculated, which is given by: $R = \frac{E_b^{vdw} - E_b^{novdw}}{E_b^{vdw}}$. Here, E_b^{vdw} and E_b^{novdw} represent the adsorption energies of LiPSs with and without vdw interactions. The magnitudes of R for LiPSs over pristine and defective BP is shown in Figure 7. The following observations can be made from the values of R: (a) the strength of vdw interaction is stronger in pristine BP compared to defective BP. Therefore, the chemical interaction of LiPSs over BP is stronger in defective BP than pristine BP during the entire discharge process. (b) the weight of R for different LiPSs are different for both pristine and defective BP. (c) for the smaller LiPSs, formed during the end of the lithiation, chemical interaction is the dominant mechanism. Given this context, vdw interactions, which are often ignored \cite{12,47,51-53}, should be considered for adsorption and diffusion of LiPSs over 2D substrates for accuracy and more effective screening.
Figure 2: (a)-(k) Top views of various configurations of Li$_2$S$_6$ molecules over monolayer pristine blue phosphorene. (l) binding energy of Li$_2$S$_6$ on the blue phosphorene for each arrangement.
Figure 3: Most favorable adsorption sites of a) Li$_2$S b) Li$_2$S$_2$ c) Li$_2$S$_3$ d) Li$_2$S$_4$ e) Li$_2$S$_6$ f) Li$_2$S$_8$ and g) S$_8$ systems over monolayer pristine blue phosphorene. (h) binding energy of all the species on pristine blue phosphorene.
Table 1: The adsorption energies (E_b), the change in the Li-S bond distance over pristine BP compared to an isolated Li$_2$S$_x$ molecules ($\Delta_{Li,S}$), the shortest distance between an Li atom and a P atom in pristine BP ($d_{Li,P}$), and charge transfer between adsorbates and phosphorene (Q)

<table>
<thead>
<tr>
<th></th>
<th>Li$_2$S$_8$</th>
<th>Li$_2$S$_6$</th>
<th>Li$_2$S$_4$</th>
<th>Li$_2$S$_3$</th>
<th>Li$_2$S$_2$</th>
<th>Li$_2$S</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_b (eV)</td>
<td>-0.95</td>
<td>-0.86</td>
<td>-1.07</td>
<td>-1.16</td>
<td>-1.54</td>
<td>-2.46</td>
</tr>
<tr>
<td>$\Delta_{Li,S}$ (Å)</td>
<td>0.024</td>
<td>0.11</td>
<td>0.03</td>
<td>0.06</td>
<td>0.11</td>
<td>0.34</td>
</tr>
<tr>
<td>$d_{Li,P}$ (Å)</td>
<td>2.82</td>
<td>2.77</td>
<td>2.58</td>
<td>2.67</td>
<td>2.65</td>
<td>2.53</td>
</tr>
<tr>
<td>Q (e)</td>
<td>0.01</td>
<td>0.02</td>
<td>0.18</td>
<td>0.40</td>
<td>0.48</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Figure 4: Differential charge density (DCD) between Li$_2$S, Li$_2$S$_2$, Li$_2$S$_4$, Li$_2$S$_8$ and pristine BP surface, with top and side views. Color code for atoms: black P; red Li, yellow S. The isosurface level is set to be 0.0015 eÅ$^{-3}$. Blue and green regions indicate charge accumulation and depletion, respectively. Bader charge numbers indicate the magnitude of electrons transferred from the LiPSs to the host material.
Figure 5: Most favorable adsorption sites of a) Li$_2$S b) Li$_3$S$_2$ c) Li$_2$S$_3$ d) Li$_2$S$_4$ e) Li$_2$S$_6$ and f) Li$_2$S$_8$ over monolayer defective blue phosphorene. (g) binding energy of all the species on defective blue phosphorene.
Figure 6: Differential charge density (DCD) between Li$_2$S, Li$_2$S$_2$, Li$_2$S$_4$, Li$_2$S$_8$ and defective BP surface, with top and side views. Color code for atoms: black P; red Li, yellow S. The isosurface level is set to be 0.0015 e$^{-}A^{-3}$. Blue and green regions indicate charge accumulation and depletion, respectively. Bader charge numbers indicate the magnitude of electrons transferred from the LiPSs to the host material.
Electronic properties of blue phosphorene with bound Li$_2$S$_x$ species

Li-S batteries comprised of pure S$_8$ as the cathode suffer from poor electrical conductivities due to the low electronic conductivity of elemental sulfur (5×10^{-30} S cm$^{-1}$ at 25 $^\circ$C)54. To investigate the influence of SV’s on the electronic properties during discharge, PDOS plots were generated for both pristine and defective substrates. We will first consider the pristine case to provide a reference point for later discussions regarding the SV’s role. As previously discussed, the polysulfide chains with higher sulfur concentrations are soluble whereas the lower concentration chains are insoluble. As representatives for each stage of the process, Li$_2$S$_2$ and Li$_2$S$_4$ are selected to represent the insoluble and soluble chains, respectively.

In the pristine case, both sample polysulfides demonstrate the formation of islands of states within the band gap (Figure 8 (a, b)). These islands stem mainly from the p-orbitals of sulfur, and minor contributions from phosphorus s and p-orbitals. In addition to these islands, sulfur donates states to both the valence band, as well as the conduction band. Some hybridization is observed in the valence band of Li$_2$S$_2$ and conduction band of Li$_2$S$_4$ between S-p and P-s states, indicating covalent bonding character. Interestingly, an island forms with the Fermi Level at its maximum which draws comparison to that of defective BP before adsorption. Most importantly, the new band gap from the maximum of this island to the conduction band is significantly reduced relative to before adsorption. Therefore, in the pristine case, the polysulfide chains are predicted to increase the conductivity of the system relative to before adsorption.

Turning our attention to the electronic influence of polysulfides on defective BP, hybridization can again be observed between the p-orbitals of sulfur and phosphorus in both Li$_2$S$_2$ and Li$_2$S$_4$ (Figure 5 (c, d)). Like the PDOS of defective BP without adatoms, there exists an island of states at the Fermi level for both soluble and insoluble polysulphides. With Li$_2$S$_2$ adsorbed, the Fermi Level sits in the middle of the island at the Fermi Level implying metallic behaviour.

The conclusion that may be drawn from comparing the electronic behaviour of both pristine and defective BP undergoing discharge in the battery is that while pristine BP is anticipated to demonstrate increased conductivity, defective BP is superior through its predicted metallic...
character. Put differently, the introduction of an SV should be beneficial considering electronic properties.

Figure 8. PDOS of (a) Li$_2$S$_2$ and (b) Li$_2$S$_4$ adsorbed over pristine BP. PDOS of (c) Li$_2$S$_2$ and (d) Li$_2$S$_4$ adsorbed over defective BP.

Diffusion of Li and LiPSs across BP

Previous research carried by Cui and coworkers demonstrated the importance of the diffusion of LiPSs in the cathode material for suppressing the shuttle effect, achieving maximal capacity and overall improvement in the performance of Li-S batteries51. Additionally, fast diffusion of Li atoms over the cathode surface results in higher deposition efficiency, and therefore, determines the distribution and growth of Li$_2$S. On the other hand, poor reaction rates arising from large energy barriers could result in electrochemically inactive large agglomerates of Li$_2$S over the cathode material leading to capacity fading. Still, while assessing the suitability of 2D materials as cathodes in Li-S batteries, the diffusivity aspect is often ignored due to associated computational cost. Here, to assess pristine BPs performance in this regard, the diffusion of an isolated Li atom is considered along both armchair and zigzag directions.

The diffusion of Li atoms is pivotal to overall performance of the battery; a cathode material with small diffusion barrier could potentially propel the redox reactions and encourage sulfur utilization at the surface. Zhou et al showed that the peak-current profile during first and second
cathodic reduction processes in metal-sulfide based Li-S correlates strongly with the energy barrier associated with the diffusion barrier of Li \(^{35}\). The P-site is the most favored site for a Li atom with a binding energy of -0.64 eV. Therefore, as shown in Figure 9 (a), the minimum energy paths (MEP) for Li diffusion are: (a) path \(P \rightarrow C \rightarrow R \rightarrow B \rightarrow P\) along the armchair direction, (b) path \(P \rightarrow P\) along the zigzag direction. The energy profiles associated with these MEPs are shown in Figure 9(b). For the path \(P \rightarrow C \rightarrow R \rightarrow B \rightarrow P\), the migration barriers (\(\Delta E\)) are 0.45 and 0.1 eV, respectively. The larger barrier of 0.45 eV is required to migrate over an R site approaching from a C-site. However, diffusion from one R-site to the next P-site, at the beginning of this path, requires a smaller barrier of 0.1 eV. Therefore, the R-site is the transition state for diffusion of Li atom in the armchair direction. On the other hand, for diffusion in the zigzag direction, the energy barrier is significantly smaller, only 0.12 eV. In the zigzag direction, the transition state is located at the center of the P \(\rightarrow\) P path. The diffusional characteristics of Li over pristine BP is similar to that of Na and K \(^{46}\). A comparison of energy barriers for the diffusion of Li, Na and K over BP is presented in Table S1. It is interesting to note that energy barriers for different alkali metals (Li, Na, K) decrease with increasing atomic radius. According to Arrhenius equation, the diffusion constant (D) is given by

\[
D = \nu \exp \left(-\frac{E_g}{k_BT} \right),
\]

in which \(k_B\) is the Boltzmann constant, \(T\) is the operating temperature and \(\nu\) is a prefactor which depends on the zero-point energy and entropic effects. Using Eqn. (5), at 300 K, the diffusion of Li in the zigzag direction is \(3.5 \times 10^5\) times faster than in the armchair direction assuming the prefactor is comparable in both directions (which could be addressed in future works). This behavior is similar to black phosphorene\(^{58}\), \(\beta_{12}\)-borophene\(^{57}\), and \(\chi_3\)-borophene\(^{57}\) but dissimilar to Striped borophene\(^{58-59}\). To assess the diffusional characteristics of LiPSs, NEB calculations were performed for the large LiPSs which are the most abundant large LiPSs formed during discharge, i.e., Li\(_2\)S\(_8\), Li\(_2\)S\(_6\) and Li\(_2\)S\(_4\) \(^{60-61}\). From a thermodynamic viewpoint, during discharge, the large LiPSs would diffuse from the most favored adsorption site to a neighboring site in the armchair and zigzag directions. The MEPs and associated energy profiles associated with the diffusion of LiPSs are shown in Figure 9(c-h). The migration barriers for the LiPSs along the armchair-direction are 0.28 eV, 0.13 eV, and 0.2 eV for Li\(_2\)S\(_4\), Li\(_2\)S\(_6\), and Li\(_2\)S\(_8\), respectively. It’s worth noting that the barriers to diffusion in the zigzag direction are smaller, with diffusion barriers of 0.23 eV, 0.13 eV, and 0.18 eV, respectively. This behavior is similar to black phosphorene and dissimilar to \(\beta_{12}\)-borophene. Furthermore, for Li\(_2\)S\(_4\), during diffusion, two Li-P bonds are broken and recreated, which could lead to the largest energy barrier. Overall, these energy barriers which are among the smallest reported could enable ultrafast diffusion of LiPSs. Using TiO\(_2\)/TiN decorated graphene for reference, the energy barrier associated with Li\(_2\)S\(_4\) diffusion is 1.04 eV \(^{62}\). For \(\beta_{12}\)-borophene, the energy barriers are 0.99 eV and 0.61 eV for Li\(_2\)S\(_4\) and Li\(_2\)S\(_8\), respectively\(^{63}\). Moreover, while the energy barriers for LiPSs migration over BP in the zigzag direction are comparable to those with black phosphorene, those in the armchair direction are significantly smaller \(^{42}\). Therefore, according to Eqn. (5) the diffusion of Li\(_2\)S\(_x\) (\(x=4,6,8\)) over BP is almost isotropic (unlike the diffusion of a Li atom), with the ratio of diffusivities in the zigzag and armchair directions being 6.9 at 300 K (assuming comparable prefactors). While slower diffusion resulting from larger barriers in the armchair direction could lead to clustering of LiPSs over black phosphorene, such a problem would not arise in pristine BP due to similar values of diffusivities in both armchair and zigzag directions. Therefore, these modest migration barriers
will allow for ultrafast transfer of Li$_2$S$_4$, Li$_2$S$_6$ and Li$_2$S$_8$ over the cathode material thereby suppressing the agglomeration of LiPSs.

Additionally, we studied the effect of SV on the energy barriers associated with the migration of LiPSs. Overall, the NEB results indicate that the energy barriers increase over SV containing BP compared to pristine BP. The MEPs and their associated energy profiles are shown in Figure 10(a-d). This behavior is similar to the migration of Li atoms over defective graphene64 and black phosphorene65 as well as Li and Na diffusion over monolayer ReS$_2$.66 For example, the energy barrier for the migration of Li$_2$S$_4$ was found to be 0.58 eV over SV containing BP opposed to a barrier of 0.28 eV over pristine BP. Similarly, for the Li$_2$S$_8$ molecule the barrier increased to 0.59 eV as in contrast to a 0.18 eV for pristine BP. These results indicate that the trade-off for increased binding energy from defects is that weakened rate capabilities can arise. Therefore, selection of an appropriate defect concentration could offer stronger binding from defects and faster rate capabilities from the pristine regions paving the way for next generation Li-S technologies.
Figure 9: Minimum energy pathways and associated energy profiles for (a,b) a Li atom, (c,d) a Li$_2$S$_4$ molecule, (e,f) a Li$_2$S$_6$ molecule, and (g,h) a Li$_2$S$_8$ molecule, over pristine BP surface in the armchair and zigzag directions, initiating at their most-favored adsorption site, and concluding at a symmetrically comparable site in the neighboring primitive cell.
Figure 10: Minimum energy pathways and associated energy profiles for (a,b) a Li$_2$S$_4$ molecule, and (c,d) a Li$_2$S$_8$, across SV containing BP surface in the armchair direction, initiating at their most-favored adsorption site and concluding at a symmetrically comparable site in the neighboring primitive cell.

Catalytic decomposition of Li$_2$S over BP

During the charging process, the final discharge product (Li$_2$S) decomposes and converts to S$_8$ molecule by cleaving the Li-S bond. While redox mediators in the aqueous electrolyte can promote the reaction, the cathode can also help in catalyzing the said reaction, thereby improving the charging efficiency of the cell. In this report, the role of pristine and defective BP on the catalytic oxidation of Li$_2$S was studied. Recently, Zhou et al demonstrated the voltage during the first charge cycle in metal-sulfide based Li-S correlates strongly with the energy barrier associated with the decomposition reaction55. CI-NEB simulations were performed to study the energy barrier associated with the reaction: Li$_2$S→LiS + Li$^+$ + e$, i.e., the additional energy required to break a Li-S bond and allow a Li atom to diffuse away to its energetically favorable adsorption site (P-site). The MEPs and associated energy profiles for the decomposition processes on pristine and defective BP are shown in Figure 11. The breakdown of a Li$_2$S molecule is determined by the binding strength of Li atom over BP and the strength of a Li-S bond. The energy required for the above-mentioned reaction is 0.55 eV and 0.50 eV over pristine and defective BP, respectively. On the contrary, the binding strength of a Li atom over pristine graphene is weaker67 compared to BP, which leads to a significantly larger energy barrier of 1.81 eV55. Furthermore, the energy barriers for the decomposition of Li$_2$S over graphene55, TiCS$_2$68, FeS55, CoS$_2$55 are 1.81 eV, 1.51 eV, 0.63 eV and 0.56 eV, respectively, which are larger than both pristine and defective BP. Using these energy barriers, the rate constant, k, for the
decomposition reaction is given by an Arrhenius type equation: \(k = k_0 \exp \left(\frac{-E_A}{k_B T} \right) \), where \(k_0 \) is a prefactor, and \(E_A \) is the activation barrier. The magnitude of the prefactor depends on the interaction strength between the substrate and the Li\(_2\)S molecule and therefore would vary on different systems. Nonetheless, such high energy barriers could reduce the decomposition reaction rate by orders of magnitude due to its exponential dependence on \(E_A \) whereas the rate is linearly proportional to \(k_0 \). Moreover, as the interaction between Li and pristine or defective BP is stronger than with graphene, as shown through its activation barriers, BP substrates can potentially allow for the oxidative decomposition of Li-S bonds at a faster rate.

![Figure 11: Minimum energy pathways for the decomposition of a Li-S bond over (a) pristine and (b) defective BP. (c) Associated energy profiles.](image)

Application toward Blue Phosphorene based Li-S cathodes

The results presented so far establish that Blue Phosphorene strategically engineered with single vacancies could inhibit the shuttle effect and help catalyze the oxidative decomposition of Li\(_2\)S during the charge process. Li et al. synthesized 2D black phosphorene, using a gas-transformation method, which was subsequently mixed with carbon nanofibers to prepare the cathode mix for a Li-S battery\(^{14}\). This method helped attain high volumetric capacity which is difficult to achieve solely by 2D materials due to their large surface to volume ratios. Other 2D materials (e.g. Graphene\(^{69-72}\), transition metal chalcogenides (e.g. MoS\(_2\)\(^{73}\), ReS\(_2\)\(^{12}\)), MXene materials(e.g. Ti\(_2\)C\(^{13}\)) were also integrated into the cathode of Li-S batteries to attain high capacities and showed improved cycle-life by suppressing the shuttle-effect. Similarly, Blue Phosphorene can be incorporated in the cathode mix by preparing 2D Blue Phosphorene from a bulk black phosphorene crystal, a method proposed by Golias et al.\(^{74}\). Moreover, several techniques can be used ex-situ to introduce single vacancies to the Blue Phosphorene lattice. For example electron beam irradiation technique was used to create vacancy defects in Graphene\(^{75}\).
and hexagonal BN. Thermal annealing, α-particle bombardment, and proton beam irradiation techniques are also alternatives methods used to create vacancies in 2D materials. For example, very recently, Huang et al employed a visible-light assisted pre-electrolysis process to introduce defects into ReS$_2$ nanosheets which showed enhanced Oxygen evolution activity. Considering these practical examples of implementing 2D materials into batteries and their defect engineering, the beneficial role of defects becomes a grounded possibility for future experimental investigations.

Conclusion

Herein, the adsorption behavior of different lithium polysulfides is studied over monolayer pristine and defective phosphorene, a recently synthesized 2D material. A meticulous searching scheme was used to find the best adsorption sites for the LiPs. Results indicated that the adsorption energies for LiPSs over pristine BP are moderate, in the range -0.86 eV to 2.45 eV. Interestingly, the creation of a single vacancy increased the adsorption energy by up to 200%, with strongest adsorption energies being -2.11 eV, -1.4 eV, -3.13 eV, -2.79 eV, 3.25 eV, and 4.34 eV for Li$_2$S$_8$, Li$_2$S$_6$, Li$_2$S$_4$, Li$_2$S$_3$, Li$_2$S$_2$, Li$_2$S, respectively. Furthermore, increased adsorption energies did not cause any significant structural deformation of the reactants, which is essential in avoiding capacity fading. Bader charge analysis, differential charge density analysis and projected density of state calculations were carried out to understand the underlying mechanisms of adsorption of different LiPSs over BP substrates. From the PDOS plots we observed that pristine BP undergoes an improvement of conductivity during the discharge process, but the metallic behaviour of defective BP makes it superior in this regard. Finally, Climbing-image nudged elastic bands simulations were carried out to search for the minimum energy paths and energy barrier profiles associated with both the diffusion of Li ion as well as large soluble LiPSs over pristine BP. The energy barrier for the migration of Li was found to be anisotropic, with the barrier in the zigzag direction three times smaller than in the armchair direction. Furthermore, the migration barriers of the LiPSs were found to be very small and of similar magnitudes in both the armchair and zigzag direction, with the lowest diffusion energy barriers being 0.23 eV, 0.13 eV and 0.18 eV for Li$_2$S$_4$, Li$_2$S$_6$ and Li$_2$S$_8$, respectively. These ultra-small energy barriers in both the in-plane directions would help conversion of adsorbed large LiPSs. To summarize, the insights obtained from this study motivate defect-engineering monolayer BP for its use as a cathode in Li-S batteries. In future, remaining phosphorene polymorphs and other 2D materials should be screened for Li-S batteries to effectively explore their unique structural and electronic properties for tunable electrode properties.

Author Contributions

All the authors contributed towards preparing the manuscript and have given approval to current version.

Acknowledgement

The authors acknowledge funding by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery grant, and undergraduate scholarship programs, the Hart Professorship, and the University of Toronto. We also acknowledge Compute Canada for providing computing resources at the SciNet CalculQuebec, and Westgrid consortia. The authors also thank Prof. Nikhil Koratkar and Mr. Sean Grixti for important discussions.
References

24. Peng, Q.; Wang, Z.; Sa, B.; Wu, B.; Sun, Z., Blue phosphorene/MS2 (M= Nb, Ta) heterostructures as promising flexible anodes for lithium-ion batteries. *ACS applied materials & interfaces* **2016**, *8* (21), 13449-13457.

59. Jiang, H.; Lu, Z.; Wu, M.; Ciucci, F.; Zhao, T., Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. *Nano Energy* 2016, 23, 97-104.

