Environment drives spatio-temporal patterns of clonality in white spruce (*Picea glauca*) in Alaska

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Forest Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>cjfr-2018-0234.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>29-Aug-2018</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Wuerth, David; Ernst-Moritz-Arndt-Universitat Greifswald Institut fur Botanik und Landschaftsokologie, Allgemeine und spezielle Botanik Eusemann, Pascal; Thuenen Institute, Institute of Forest Genetics Trouillier, Mario; Greifswald University, Institute of Botany and Landscape Ecology Burras, Allan; Technische Universitat Munchen, Chair of Ecoclimatology Burger, Andreas; Ernst-Moritz-Arndt-Universitat Greifswald Institut fur Botanik und Landschaftsokologie Wilming, Martin; Universitaet Greifswald Roland, Carl; Denali National Park and Preserve Juday, Glenn; University of Alaska Fairbanks, Forest Sciences Department Schnittler, Martin; Ernst-Moritz-Arndt-Universitat Greifswald Institut fur Botanik und Landschaftsokologie, Allgemeine und spezielle Botanik</td>
</tr>
<tr>
<td>Keyword:</td>
<td>boreal forest, climate change, clonal growth, microsatellites, Picea glauca</td>
</tr>
<tr>
<td>Is the invited manuscript for consideration in a Special Issue?:</td>
<td>Not applicable (regular submission)</td>
</tr>
</tbody>
</table>
Environment drives spatio-temporal patterns of clonality in white spruce (*Picea glauca*) in Alaska

David G. Würth (further information see below, author for correspondence)

Pascal Eusemann; Institute of Forest Genetics, Thuenen Institute, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany, email: pascal.eusemann@thuenen.de

Mario Trouillier; Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany, email: mario.trouillier@uni-greifswald.de

Allan Buras; Chair of Ecoclimatology, TU Munich, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany, email: allan@buras.eu

Andreas Burger; Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany, email: andreas.burger@posteo.de

Martin Wilmking; Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany, email: wilmking@uni-greifswald.de

Carl A. Roland; Denali National Park and Preserve, P. O. Box 9, Denali Park, AK 99755, USA, email: carl_roland@nps.gov

Glenn P. Juday; Forest Sciences Department, University of Alaska Fairbanks, Fairbanks, AK 99775, USA, email: gpjuday@alaska.edu

Martin Schnittler; Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany, email: mschnitt@uni-greifswald.de

Author for correspondence:

David G. Würth

Ernst-Moritz-Arndt University Greifswald,

Institute of Botany und Landscape Ecology,

Soldmannstr. 15,

17487 Greifswald

Tel: +49 3834 4204111

Email: david.wuerth@uni-greifswald.de

https://mc06.manuscriptcentral.com/cjfr-pubs
Abstract:

Many plant species reproduce by cloning, if environmental conditions are unfavorable for sexual reproduction. To test the alternative hypotheses whether cloning is an “exit strategy” or caused by selection, clonal growth in white spruce (*Picea glauca* (Moench) Voss) was investigated in three stands in Alaska, each consisting of a core (closed forest) and an edge (treeline) plot. A total of 2571 trees were mapped and genotyped with 11 SSR markers. The proportion of clonal trees follows a moisture gradient and was lowest in the dry Interior basin (4.5%), followed by the sites at the Alaska Range (9.0%) and Brooks Range (21.7%). At the two latter sites, clonal growth was more frequent in the edge plot. A comparison among 960 aged trees revealed that clonal growth becomes more likely with increasing age and continues over the life span of a tree. Genetic data do not indicate any genetic predisposition for cloning. Most likely, clonal growth in white spruce takes place via layering and depends on environmental conditions. Since performance of the trees, and therefore likely plant reproductive success, is lower in plots with a high proportion of clones, selection for clonal growth seems to be highly unlikely.

Key words: boreal forest, climate change, clonal growth, microsatellites, *Picea glauca*

Introduction

The majority of vascular plant species employ two reproductive options, sexually via pollen and seeds and vegetatively by cloning. Clonal reproduction can be achieved through plant structures fragmenting mechanically or by decay (stolons, rhizomes, root suckers), vegetative diaspores (e.g. bulbils, turions), or agamospermous via seeds with vegetatively derived embryos (Hörandl and Paun 2007). Although very different in terms of achieved dispersal distances, all these
mechanisms result in genetically identical individual plants. Cloning is a common strategy among many plants (e.g., in two thirds of all Central European vascular plant species, Klimešová and Klimeš 2009) due to several major advantages.

First, cloning is a backup strategy for harsh environments where sexual reproduction is at risk (Nichols 1976, Bostock 1980). Second, spatial expansion by clonal growth can increase sexual fitness, if this brings pollen within reach of other genotypes (Matsuo et al. 2014). This depends on dispersal features of pollen and distances bridged by clonal growth (stands for all these trees originating from vegetative reproduction), and on the degree of intermingling between clones (Somme et al. 2014). Model calculations (Van Drunen et al. 2015) demonstrated a fitness gain for higher clonality in cases of spatially restricted dispersal of pollen and especially seeds. However, mating interference (Vallejo-Marín et al. 2010), may lead to inbred offspring. Similarly, disruption of sexual polymorphisms can lead to unbiased ratios of mating groups (Barrett 2015); both processes should decrease sexual fitness.

For taxa which have lost the capability for sexual reproduction, cloning is the only mode of reproduction (Pfeiffer et al. 2012, James and McDougall 2014).

In regions where natural disturbances are likely to severely damage trees, cloning may help to regenerate them. If conditions for pollinators are unfavorable, cloning helps since no pollination is needed. This might be the explanation why clonality often increases towards the margin of a species range (Silvertown 2008, Klimešová and Doležal 2011) where the environment may be harsher compared to the optimum conditions for a species.

Selection for clonal growth should occur as long as a clone produces more offspring or persists longer than its singleton peer (Pan and Price 2002). However, a trade-off appears to occur, since clonal growth diverts resources away from sexual reproduction (Van Drunen and Dorken 2012) which can be compensated only via enhanced resource capture. If increased sexual fitness indeed
selects for increased rates of cloning, selective effects should occur especially within the main range of a species, where the conditions for sexual reproduction are at its optimum. In contrast, if cloning serves as a backup strategy to increase survival or replaces missing sexual reproduction, it should be more advantageous at the margin of the range.

To test these hypotheses, we use data from a massive genotyping effort in Alaskan white spruce (*Picea glauca* (Moench) Voss). Similar to black spruce (*Picea mariana* (Mill.) B.S.P. (Légère and Payette 1981, Payette et al. 1994, Laberge et al. 2001, Viktora et al. 2011) this species has been shown to grow clonally in certain circumstances (Walker et al. 2012, Wilmking et al. 2017), most likely to endure periods unfavorable for sexual reproduction. We compared edge and core populations at a latitudinal, an elevational and a drought-controlled treeline to answer the following questions: Is cloning ubiquitous throughout range of white spruce in Alaska? Does it occur in all life stages of a tree? Is cloning more common in more extreme habitats? What are the drivers of cloning in white spruce?

Material and Methods

Study species

White spruce is a common treeline species and one of the most widely distributed conifers in North American boreal forests, occurring across the continent from Newfoundland and Labrador to Alaska. It reaches ca. 69° N at its northernmost stands in the Northwest Territories, Canada; the southern edge of the contiguous distribution is marked by the Great Lakes at about 44°N. Its vertical distribution ranges from sea level to 1520 m (Burns and Honkala 1990). While the treeline in eastern North America is mainly formed by black spruce (Lavoie and Payette 1992,
Gamache and Payette 2004), white spruce takes over as the primary treeline forming species in western North America (Payette and Filion 1985, Lloyd et al. 2005). The species is widely favored for timber production in Canada and the United States and one of the most important commercial species in the boreal forest (Burns and Honkala 1990).

Study sites

We established three study sites: 1) at the elevational treeline in the Alaska Range, 2) at a moisture limited treeline on a south-facing bluff near Fairbanks in Interior Alaska and 3) at the latitudinal treeline in the Brooks Range. All study areas were located on south-facing slopes and each plot was laid out parallel to the slope. In each study area two plots with at least 300 trees were selected for sampling. Initially the plots were designed for an area of 1 ha (100 x 100 m), but if in this plot less than 300 trees were found, we increased the area. A core plot was established in a closed canopy forest below the treeline and an edge plot at the treeline (Table 1). In the Alaska Range, a large saddle separated core and edge plot, which were about 1.3 km apart. In the Brooks Range, core and edge plot are situated at a steep slope and are only about 30 m apart. The drought-controlled treeline site (edge) in the Interior basin consisted of the upper slope of a south exposed bluff of the Tanana River and mature, closed canopy forest site (core). Both plots are part of the Bonanza Creek LTER site and about 7 km apart (Viereck et al. 1986, Juday 2012). Monthly climate data were obtained from the Scenarios Network for Alaska + Arctic planning (SNAP; www.snap.uaf.edu) as gridded data for each of the three sites.

Within each plot, all trees were mapped using a Trimble R3 differential GPS device (Trimble) attaining a mean precision of 0.48 m in floating mode. Needles for DNA extraction were collected from all living trees, dried and stored on silica gel. Tree height and, if applicable, diameter at breast height (dbh) were recorded using a Suunto PM-5 clinometer and a measuring...
tape. The basal diameter of the crown and the height of its lowermost living branch above ground
were measured for each tree (see https://figshare.com) respectively.

Age of the trees was determined by three methods. These were (1) coring: >96% of the older
trees with a dbh exceeding 5 cm were cored at 20–50 cm height for age determination; the age
derived from these cores was corrected for a) deviation from pith and b) height of coring.

This was not possible for the Interior core plot (we got no permission to core trees within the
LTER). (2) A height-age relationship was established for young trees below 1.4 m (breast
height): 20–40 trees just outside of each plot were cut at ground level and aged (see Table 1), and
the resulting relationship was used to estimate the age of young trees in the plots. Due to National
Park regulations, we could not cut trees in the Denali National Park (Alaska Range); here we
assumed seedling height growth per year as the mean between Brooks Range and Interior basin
site. (3) For the remaining medium-sized trees (usually taller than 1.4 m but below 5 cm dbh) we
estimated the age from the relationship dbh to age obtained by a linear regression of a scatter plot
including the first two cohorts. This methods were applied for 65.2 % (1), 18.5% (2) and 16.3 %
(3) of all trees. In addition, we calculated the height-age ratio for each tree with available age data
to obtain a comparable proxy for the growth rate.

DNA extraction and microsatellite analysis

About 70 mg of needle tissue was homogenized using a Retsch ball mill MM301 (Retsch). DNA
was extracted using the Invisorb Spin Plant Mini Kit (Stratec) following the manufacturer’s
protocol. We analyzed eleven microsatellite loci developed by Hodgetts et al. (2001) and Rajora
et al. (2001). For the Alaska Range and the Brooks Range these primers were combined into
three multiplex assays amplifying several loci simultaneously developed by Eusemann et al.
(2015). For the Bluff plot the three multiplex systems were combined into two multiplex
systems. PCRs were performed on Eppendorf Mastercycler thermocyclers (Eppendorf) using the Qiagen Multiplex PCR Plus Kit (Qiagen) and a modified protocol in a total volume of 10 µl. Each reaction contained 1x Multiplex PCR Plus buffer (Qiagen), 0.2 µM of each primer, and 20 ng DNA. For each assay, a primer mix containing 2 µM of all primers used within the respective assay was prepared. An equimolar concentration of 0.2 µM produced balanced signals for all loci within an assay. PCR conditions were: A cooling step of 5 minutes at 4°C while the lid of the thermocycler heats up, a denaturing and polymerase activation step of 5 minutes at 95°C, followed by 30 cycles of 95°C for 30 seconds, annealing at 60°C for 90 seconds, elongation at 72°C for 30 seconds and a singular final extension at 68°C for 10 minutes. PCR products were diluted 1:5 in ddH₂O. Fragment analysis was carried out on a 3130xl Genetic Analyzer (Life Technologies) using 1 µl of diluted PCR product, 0.15 µl of 500 GeneScan LIZ size standard, and 8.85 µl HiDi Formamide (both Life Technologies). Fragment size determination and binning were performed using Peak Scanner software (Life Technologies), Genemapper 5.0 (Applied Biosystems) and Allelogram (Morin et al. 2009).

Genotyping and population genetic analyses

Clones were determined by identification of identical multilocus genotypes (MLG) using GenAlEx 6 (Peakall and Smouse 2006). To account for genotyping errors, we additionally used the algorithm described in Schnittler and Eusemann (2010). This allowed variable thresholds to be set for genotyping errors (i.e. MLGs with 0, 1, 2,… deviating alleles assigned to a clone); and a histogram to be constructed for 1 to n deviating loci for all pairwise combinations of trees to derive the optimum value for this threshold. For all analyses based on microsatellite data, only

1 cfr-2018-0234suppla Primer combinations of the two microsatellite multiplex sets used for the Interior plots
trees showing not more than two loci with null alleles or genotyping errors were considered (counted as successfully genotyped).

As clonal diversity measures we calculated $R = (G–1)/(N–1)$ with G being the number of genotypes and N the number of sampled trees and its opposite parameter, clonality $C = 1–R$ (Dorken and Eckert 2001), as well as the proportion of trees belonging to clones within the plot. Probability of Identity (PID) was calculated using GenAlEx 6, and null allele frequencies were calculated using GenePop 4.0 (Rousset 2008). Number of trees per clone and tree age was compared between core and edge plots using the Wilcoxon test. To test for genetic predisposition of clonal growth, a PCA for all microsatellite genotypes was carried out separately for the three study regions (Brooks Range, Interior basin, Alaska Range) using PCOrd (McCune 1986), and the genotypes belonging to trees with clonal growth were mapped over the plot of sample scores. For this procedure, every clone was considered only once, and loci with null alleles were replaced by the most frequent allele at the respective locus. In addition, a second PCA was performed with only individuals showing no null alleles or genotyping errors at any locus.

To test for genetic clustering of clonal trees among all genotypes, the difference of the centroids for the first three axes between non-clonal genotypes and clonal genotypes was calculated. A Mantel test, selecting randomly 999 times the same number of clonal genotypes as recorded for the study region, was used to calculate confidence intervals (CI) for the average distance between centroids and compared with the figure calculated from actual clonal genotypes. In addition, the calculation of F_{ST}-Values (Wright 1949), Dest (Jost 2008) values and an analysis of molecular variance (AMOVA) using GenAlEx 6 were carried out, treating singleton and clonal trees as two separate populations, allowing a calculation of the proportion of genetic diversity (i) between plots and (ii) between trees belonging to a clone and such growing as singletons. A Wilcoxon test was performed to test for age differences between clonal and singleton trees and for differences.
in the proportion of clonal trees between sites because our data followed non-normal
distributions. Tests were performed for all plots separately using R 3.4.0 (R Core Team 2017).

Results

Genetic diversity and plot structure

A total of 2782 trees in three paired plots (see Fig. 1a) were mapped; 92% of these were
successfully genotyped (the remaining 8% failed due to poor sample quality not allowing
successful extraction of DNA). This resulted in 2571 successfully genotyped trees and a total of
339 alleles detected across the 11 microsatellite loci. We repeated about 10% of all samples to
check for genotyping errors, but obtained an error rate of zero (the multilocus genotypes were
identical). Allele numbers ranged from 8 to 68 per locus, with a mean of 30.8. This high
variability resulted in high exclusion probabilities with a PID computed over all loci of 1.34×10^{-15}. We identified a total of 96 clones (Fig. 2) using a threshold of two scoring errors (a maximum
of two alleles that did not match). The clonal identity of 223 trees was unambiguously identified
(all 11 microsatellite loci are identical for the clone), whereas 40 trees differed in one locus, and
10 trees in two. Of the 50 mismatches (a tree deviated at one or two loci from the genotype of the
clonal identity of 223 trees was unambiguously identified
clone), 70% involved a homozygous locus (which may contain a hidden null allele) or a visible
null allele.

The investigated plots are genetically diverse but not genetically differentiated: even between the
plots in the Alaska and the Brooks Range, separated over a distance of ca. 800 km, F_{ST} and $Dest$
values do not exceed 0.061 and 0.234, respectively (Table 2a). When comparing clonally
growing and singleton trees with each other, F_{ST}, G_{ST} and $Dest$ values show no differentiation
between the two groups (Table 2b). The AMOVA resulted in a maximum value of 3.2% for the
genetic diversity found between clone members and singleton trees (Table 1).

Clones in white spruce

In the six plots we identified a total of 96 clones including 273 trees among 2571 genotypes; on
average 3.8% of all trees formed clones. Clonal growth occurred in all investigated plots, yet in
different proportions. Cloning was more prevalent in edge than in core plots (Table 1). Looking
at regions, the number of trees belonging to clones was highest in the Brooks Range, followed by
the Alaska Range, and lowest in the Interior basin (Table 1; Figs. 1b–g). Table 1 shows the most
important climatic parameters (period 1901–2009) for the three regions (mean temperature,
calculated from monthly means and mean precipitation).

Most of the clones comprise only two or three trees (Fig. 2a). The three clones with more than 10
trees are all from edge plots (one Alaska, two Brooks Range). Clones were of limited size: 95%
of the clones did not exceed 13.8 m between the two most distant trees, 90% were below 8.4 m.
The PCA of the eleven microsatellite loci revealed a distance different from zero for all three
regions between the centroids of the sample scores for singleton and clonal trees, but this was
nearly always within the confidence interval for the bootstrapped distances (Alaska Range:
observed 0.541, bootstrapped CI 5% 0.178, mean 0.452, CI 95% 0.798; Interior basin: observed
0.569, bootstrapped CI 5% 0.119, mean 0.309, CI 95% 0.552; Brooks Range: observed 0.477,
bootstrapped CI 5% 0.127, mean 0.337, CI 95% 0.587). Neither PCA nor AMOVA (Table 1)
showed significant differences between MLGs of clonal and singleton trees.
Tree traits and clonality

Trees differed strongly in shape and age between plots. In the dry interior basin, the lowermost branches of a tree occur on average ca. 0.9 m (data only for the edge plot available) above ground. In the core plots of the two mountain ranges lowermost branches were ca. 0.6 m, but in the edge plots only 0.3 m above ground (Table 1). The proportion of clonal trees was inversely correlated with the height of the lowermost branches \((r = -0.71)\) (n.s.) although we can only call this a trend do to the lack of significance. Age as a covariable had no effect \((r = 0.01)\) on this correlation: the lower the branches, the more likely cloning becomes (Fig. 2c). As shown in Table 1, trees in the core plots are on average nearly two times older than those in the edge plots, a similar pattern occurs for the oldest trees in the plots.

The age distribution of the trees (Fig. 3) shows pronounced peaks in recruitment. Judged from the slope of the height to age ratio (Table 1), trees grow fastest in the dry Interior (data only available for the edge plot), followed by the Alaska Range and the Brooks Range. In the two mountain ranges, growth at the edge appears to be slower than in the core plots (which are both at lower elevations compared with the respective edge plot). Clones are older compared to singleton trees, especially in the Brooks Range, where the proportion of clonal trees is generally highest (Fig. 3). Since nearly all living trees in a plot were genotyped, most of the young clone members were included. Age of the trees within a clone is very unevenly distributed: From the 80 clones with age data, the oldest and the youngest member differed by less than 20 years in 26 trees, by less than 40 years in 45 trees, by less than 80 years in 53 trees, whereas in the remaining third the maximum age differences reach up to 200 years. This holds true even more for the maximum age of the clone members, which range from 3 to 444 years, without any recognizable age peak.

For the five plots where age data are available, there is a negative correlation \((r = -0.43; p < 0.05)\) between the mean yearly increment (height/age) and the percentage of clones within each
Clonal trees show significant differences (p < 0.05) in age between the Brooks Range plots and the Alaska Range plots as well as between the Brooks Range plots and the interior plot. There is no significant difference (p > 0.05) between the plots from the Alaska Range and between them and the interior edge plot (Table 1). Within all plots except the Alaska Range edge plot and the Interior edge plot age of clonal trees differs significantly from singleton tree age (Table 1). For the interior core plot no age data are available except for five trees, but the distribution of dbh data suggests two very pronounced age cohorts: an old-growth cohort (mean dbh 32.3±10.7 cm, range 10.1–59.2 cm, n = 165) and a much younger cohort (mean dbh 1.0±0.4, range 0.3–3.4 cm, n = 45, with additionally 432 trees below 1.5 m height where a dbh could not be measured).

Discussion

White spruce appears to be capable of self-cloning at almost every age: the youngest clone found involved two trees less than 1.5 m height, estimated to be 21 and 22 years, the oldest clone comprised two trees of 424 and 262 years, respectively, although it is worth noting that the mean age of clonal trees was significantly higher than that of singleton trees (Table 1).

Potential mechanisms of clonal growth in white spruce

The proportion of clonal trees showed a negative correlation with the height of lowermost living branches (measured as crown height above ground, $r = -0.71$) (n.s.) in our sites. This result suggests that layering is the common mechanism generating clones. According to a study in arctic Canada this mechanism is known for white spruce (Caccianiga and Payette 2006). Other possible mechanisms such as resprouting, root suckering (many Rosaceae and Salicaceae, Wiehle
et al. 2009) or rooting of broken twigs (Salix fragilis, Beismann et al. 1997) seem to be fairly unlikely. A second possible mechanisms includes fallen trees that may root with their apical branches. However, we noted only a very few fallen trees in the plots; even the majority of the dead trees were still standing – most likely because the extremely narrow crown of white spruce is less vulnerable to toppling from snow or wind forces.

Colonization of treelines in Alaska and age distribution

Both clonal and singleton trees are significantly younger in the edge plots at the Alaska and Brooks Range if compared with the respective core plots (Table 1). Although age data for the Interior core plot are not available, dbh data suggest a similarly pronounced age difference between forest and edge plots in the Interior basin. With trees showing maximum ages of 188 years (Alaska Range), 129 years (Interior basin) and 254 years (Brooks Range) within the edge plots, our data indicate that initial treeline advance does not date to recent decades and that complete reestablishment after disturbance did not occur following initial tree establishment. However, the median of 47 years (Alaska Range), 71 years (Interior basin) and 40 years (Brooks Range) suggests that the majority of the tree colonization did indeed happen only recently, consistent with a recent process of “thickening” or increased stand density. However it appears that microclimate limits the successful establishment of seedlings, which for its part limits forest expansion.

Potential benefits of clonal growth for trees

Clonality, especially at high altitudes and in harsh environments, seems most important as a factor to enhance an individual’s survival chances (Kimura et al. 2013). Additionally, in the relatively harsh conditions extant in treeline situations, facilitation effects may be operative: tree
islands can have positive effects for survival and growth rates of their members (Körner 2012).

Co-occurrence of high levels of facilitation and clonality in arctic and alpine environments is not uncommon, and clonality likely plays a role in regulating facilitation processes (Brooker 2017).

Our data fit well into this pattern: the higher proportion of clonal trees at edge compared to core plots may indicate a shift from facilitation to competition from treeline to forest for tree stem recruitment and early survival, as postulated by Körner (2012). For white spruce in Alaska, the main factor limiting clonal growth seems to be the climate (see Table 1): cool and wet conditions favor clonal recruitment in contrast to drought-controlled sites. The Interior edge plot, situated at the edge of a bluff, has certainly the warmest and driest microclimate and shows the lowest proportion of clonal trees (Table 1). For individual growth of already established trees with adequate rooting depth, the warmer and drier conditions in the core plots (forest) appear to be more favorable than at the edge (treeline): in both Alaska and Brooks Range trees the core plots, situated at lower elevations and more sheltered sites than at edge, sustain greater radial growth.

The negative correlation \(r = -0.43; p < 0.05 \) between average increment (calculated as height/age ratio) and the percentage of clones within a plot indicates that the better the individual growth of the trees within a plot, the less likely cloning becomes.

Clones may enjoy increased fitness by (i) increased lifetime of the genotype, (ii) more stems allowing a higher seed output, and (iii) bridging larger distances for pollination. If clonal growth increases the persistence of a genotype, thus ensuring future seed production, a fitness advantage should be realized for such a genet (Fischer and Van Kleunen 2001, Pan and Price 2002, Douhovnikoff et al. 2004) as fitness is often estimated as lifetime reproductive success (Antonovics and Ellstrand 1984). If a multistemmed clonal individual of a tree produces more seeds, this may as well translate into a fitness advantage. Although we cannot assume that tree
performance is correlated with reproductive output, our data suggest that a fitness advantage of
clones, if it exists, is small. Increased pollination distances are unlikely to be of any importance,
since boreal forest trees are usually wind pollinated gymnosperms which can realize large
distances for pollination (O’Connell et al. 2007), and this is strongly suggested by the low F_{ST} and
Dest values in our data (Table 2a). In addition, the small average radius (3.9±4.8 m) of the clones
found in white spruce makes a fitness gain by increased pollination distances unlikely, especially
when compared to data on pollen dispersal in closely related Norway spruce (Picea abies (L.)
Jarosław et al. 2004).

In contrast, clonal fitness may suffer from (i) resources diverted from sexual reproduction to
clonal growth, (ii) competition between trees of a clone, and (iii) mating interference which leads
to more selfed offspring which appears to have fitness disadvantages (Charlesworth and

For trees, root suckers which occur in different species can bridge large distances (up to 40 m in
Populus euphratica Oliv., Wiehle et al. 2009). In contrast, branch layering or resprouting of
fallen trunks, which seems to be the mechanism for white spruce, leads to much smaller clonal
spread distances, since the crown radius of even the 25% quantile of the strongest trees (highest
dbh values) is below 1.5 m; and their height is below 12.7 m. Therefore, individual trees in white
spruce clones are close together: we measured a mean distance between a member of a clone and
its nearest clonal neighbor of 2.9±5.2 m.

Ecological importance of cloning
For persistence of the species in a changing climate in Alaska through space and time cloning can be of high ecological importance. There are several studies indicating that clones survived since and even during the last glaciation (Kemperman and Barnes 1976, May et al. 2009). Spruce has adapted to survive severe climate and can persist for hundreds of years by vegetative propagation (de Vernal and Hillaire-Marcel 2008), presumably this ability has been relatively more important during periodic unfavorable intervals in the past, such as the "Little Ice Age" and other times where range contraction may have occurred in white spruce (Caccianiga and Payette 2006). The ability to reproduce by clones in combination with its facilitation effects should be beneficial for persistence especially in marginal habitats. Snow accumulation could play an additional role in facilitation as shown for white spruce by Scott et al. (1993) and for shrubs by Sturm et al. (2001). One hypothesis put forward by MacDonald (1984) is that the apparently explosive surge of white spruce populations along the western interior 'corridor' after the glacial retreat was initiated from small populations that persisted vegetatively in isolated localities with particularly favorable microclimates. Clonal growth might be the reason why white spruce trees, although in low densities, survived in glacial refugia in East Beringia (Brubaker et al. 2005) but also in Alaska (Anderson et al. 2006), as suggested by only trace amounts of pollen in lake sediments. The production of viable seeds in white spruce is extremely episodic, particularly in marginal treeline habitats (Roland et al. 2014), with large cone and seed crops synchronized in time ensure maximum seed output especially after large-scale wildfires (Juday et al. 2003). Thus the ability to reproduce vegetatively is an important "stop-gap" that would allow persistence (and perhaps even encourage expansion) during extended intervals of low sexual reproductive output, and thus prevent the decay of marginal populations (Caccianiga and Payette 2006).

Selection pressure for clonality in white spruce?
While clonality benefits a genotype directly, it is less suited as a long-distance colonizing strategy for trees, as both root suckering and layering is limited to the immediate vicinity of a tree. Rare exceptions in trees include broken branches in riparian species of willows and poplars which may be washed away by floods and root far away from the mother tree (Densmore and Zasada 1978, Asaeda et al. 2011). In gymnosperms, clones always seem to be capable of only limited spatial expansion, and this certainly holds true for white spruce (Fig. 2b). Because of the small spatial scale of clones compared with distances bridged by pollen, detrimental consequences of mating interference should be negligible. Furthermore this limits potential positive effects, like siring more offspring by increased pollination distances. Therefore, increased sexual fitness of clones, if it occurs at all, is most likely to be associated with the potential larger reproductive (seed) output of clones. The lifetime reproductive output of trees cannot be assessed easily, especially with the high fluctuations in seed output among years known for white spruce. However, if dbh is taken as a rough proxy for reproductive output, a significantly higher seed output of clones compared to a similar area of singletons seems to be unlikely. The last theoretical possibility for increased sexual fitness is a longer lifetime reproductive success, i.e. a longer persistence of clones compared with singletons. This is difficult to assess from our data, as the plots at the treelines are naturally younger than those in the forests (Table 1).

However, the white spruce stands investigated in this study show an important feature which makes selection for cloning unlikely: trees grow best in plots where the proportion of clonal trees is lowest. Judged by the height/age relations, trees in the Interior edge plot grow 2.4 times faster than those at the edge plot in the Brooks Range, but judged from the proportion of clonal genotypes to all genotypes, trees at the Brooks Range treeline have a 4.1 fold higher probability to belong to a clone. This argues against a selective pressure for cloning, since this mechanism works best where white spruce is at the range margin. The generally low $F_{ST}/G_{ST}/Dest$ values
between the clones and their singleton counterparts (Table 2b) provide further evidence against selection. In addition, the low F_{ST} and Dest values between the six investigated plots do not indicate a genetic differentiation (Table 2a) – in spite of the significant differences in the proportion of clonal trees. We therefore assume that the occurrence of clones is mainly determined by the environment.

However, it should be noted that the microsatellite loci used in our study are neutral markers, which limits their suitability to investigate adaptive processes (Kirk and Freeland 2011). The ultimate proof for a selective advantage of clonal growth can only be demonstrated by monitoring reproductive success, i.e., fitness, of clones compared with singletons, and markers from sequences that are known to be under selection should reveal a differentiation between clonal and singleton trees.

Summarizing, we can state that clonality seems to be widespread in Alaskan white spruce populations, especially in treeline populations, but does not constitute the primary mode of reproduction. Clonality seems to be triggered by particular environmental conditions that favor layering. A genetic predisposition or selection for cloning is unlikely, since (i) the genetic differentiation of populations throughout Alaska is low, (ii) clones are not genetically distinct from singleton trees, and (iii) trees grow best, and have thus likely the highest reproductive output, where the proportion of clones is lowest. However, especially at the treeline facilitation effects may be invoked to explain white spruce clonal growth. Environmentally induced cloning is not necessarily more common in harsh environments. For instance, clonal plants are not consistently more frequent in cold environments (Klimešová and Doležal 2011). Most likely, the drivers for cloning result from a mixture of phylogenetic constraints (the mechanism of cloning determines clone extension and the degree of intermingling of clones) and environmental
conditions (advantages of cloning for plant regeneration and persistence) and are slightly
different for each plant species.

Acknowledgements

This research was funded by the DFG Research Training Group RESPONSE (DFG GRK2010)
and DFG Wi2680/8-1. Thanks are extended to Carlos A. Martínez-Muñoz who contributed with
preparation of needle samples and sequencing. The authors declare no conflict of interest.

Author’s contributions

M.W., D.G.W. and M.S. designed the study, D.G.W., P.E., M.T., A.B., M.W. and M.S. carried
out field work, D.G.W. and P.E. performed the microsatellite analyses, D.G.W., P.E. and M.S.
analyzed the data, G.P.J. supplied data for the Interior core plot, M.W., C.A.R. and G.P.J.
contributed critically to the drafts. All authors gave the final approval for publication.

References

Antonovics, J., and Ellstrand, N.C. 1984. Experimental studies of the evolutionary significance of
sexual reproduction. I. A test of the frequency-dependent selection hypothesis. Evolution

Asaeda, T., Gomes, P., and Sakamoto, K. 2011. Tree colonization trends on a sediment bar after a

https://mc06.manuscriptcentral.com/cjfr-pubs

Kimura, M.K., Kabeya, D., Saito, T., Moriguchi, Y., Uchiyama, K., Migita, C., Chiba, Y., and

doi:10.1007/978-3-0348-0396-0_1.

https://mc06.manuscriptcentral.com/cjfr-pubs

Table 1 Characteristics of the six mapped and genotyped stands of *Picea glauca*. Coordinates (WGS84) of the lower left edge are given for each plot. Precipitation and temperature are the monthly means for the period 1901–2009; results for AMOVA depict the per cent genetic diversity between clonal and singleton trees

<table>
<thead>
<tr>
<th>Region</th>
<th>Alaska Range</th>
<th>Interior basin</th>
<th>Brooks Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core</td>
<td>Edge</td>
<td>Core</td>
</tr>
<tr>
<td>Stand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitude [dd.ddddd° W]</td>
<td>149.01000</td>
<td>149.00972</td>
<td>148.28077</td>
</tr>
<tr>
<td>Latitude [dd.ddddd° N]</td>
<td>63.72472</td>
<td>63.73667</td>
<td>64.76661</td>
</tr>
<tr>
<td>UTM Easting</td>
<td>6W 400880</td>
<td>6W 400680</td>
<td>6W 439080</td>
</tr>
<tr>
<td>UTM Northing</td>
<td>7067650</td>
<td>7069040</td>
<td>7183060</td>
</tr>
<tr>
<td>Elevation [m a.s.l.]</td>
<td>802</td>
<td>1008</td>
<td>406</td>
</tr>
<tr>
<td>Exposition</td>
<td>South</td>
<td>South</td>
<td>South</td>
</tr>
<tr>
<td>Precipitation [mm]</td>
<td>38.7</td>
<td>24.9</td>
<td>36.3</td>
</tr>
<tr>
<td>Temperature [°C]</td>
<td>−3.04</td>
<td>−2.71</td>
<td>−7.75</td>
</tr>
<tr>
<td>Trees sampled</td>
<td>380</td>
<td>313</td>
<td>677</td>
</tr>
<tr>
<td>Trees genotyped</td>
<td>352</td>
<td>303</td>
<td>640</td>
</tr>
<tr>
<td>Trees in clones</td>
<td>20</td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td>Size of largest clone</td>
<td>2</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Number of clones</td>
<td>10</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Mean clone size</td>
<td>2.00±0.00</td>
<td>2.97±4.60</td>
<td>2.00±0.00</td>
</tr>
<tr>
<td>Proportion of clonal trees</td>
<td>0.06</td>
<td>0.13</td>
<td>0.05</td>
</tr>
<tr>
<td>Clonality C</td>
<td>0.03</td>
<td>0.10</td>
<td>0.03</td>
</tr>
<tr>
<td>AMOVA</td>
<td>1.2%</td>
<td>0.0%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Trees cored and aged</td>
<td>175</td>
<td>165</td>
<td>5</td>
</tr>
<tr>
<td>Trees with estimated age</td>
<td>196</td>
<td>150</td>
<td>495</td>
</tr>
<tr>
<td>Average dbh ± SD [cm]</td>
<td>15.5±14.1</td>
<td>5.6±5.9</td>
<td>8.5±15.1</td>
</tr>
</tbody>
</table>

https://mc06.manuscriptcentral.com/cjfr-pubs
<table>
<thead>
<tr>
<th></th>
<th>68</th>
<th>29</th>
<th>59</th>
<th>37</th>
<th>45</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dbh of largest tree [cm]</td>
<td>0.071</td>
<td>0.055</td>
<td>n.d.</td>
<td>0.114</td>
<td>0.050</td>
<td>0.047</td>
</tr>
<tr>
<td>Height/age ratio</td>
<td>106±71</td>
<td>55±39</td>
<td>n.d.</td>
<td>55±35</td>
<td>94±73</td>
<td>60±54</td>
</tr>
<tr>
<td>Average age ± SD [years]</td>
<td>353</td>
<td>188</td>
<td>n.d.</td>
<td>129</td>
<td>444</td>
<td>254</td>
</tr>
<tr>
<td>Age of oldest tree [years]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age of clonal trees</td>
<td>65±63</td>
<td>61±40</td>
<td>n.d.</td>
<td>53±32</td>
<td>164±70</td>
<td>123±56</td>
</tr>
<tr>
<td>Mean age of singleton trees</td>
<td>106±71</td>
<td>54±38</td>
<td>n.d.</td>
<td>58±33</td>
<td>86±71</td>
<td>40±34</td>
</tr>
<tr>
<td>Mean age of clonal trees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height correction for age</td>
<td>3.00</td>
<td>3.00</td>
<td>n.d.</td>
<td>3.40</td>
<td>3.40</td>
<td>2.39</td>
</tr>
<tr>
<td>(years per cm height)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowermost twig: height above ground [m]</td>
<td>0.69±0.55</td>
<td>0.23±0.24</td>
<td>n.d.</td>
<td>0.93±1.34</td>
<td>0.62±0.74</td>
<td>0.29±0.46</td>
</tr>
</tbody>
</table>

1 only trees above 1.5 m height considered
Table 2a FST values (lower left) and Dest values (upper right) between the six different stands (see Table 1 for sample sizes)

<table>
<thead>
<tr>
<th>Stand</th>
<th>Alaska Range</th>
<th>Interior basin</th>
<th>Brooks Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>core edge</td>
<td>core edge</td>
<td>core edge</td>
</tr>
<tr>
<td>Alaska Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>core</td>
<td>0.050</td>
<td>0.066</td>
<td>0.232</td>
</tr>
<tr>
<td>edge</td>
<td>0.016</td>
<td>0.069</td>
<td>0.190</td>
</tr>
<tr>
<td>Interior basin</td>
<td>0.023</td>
<td>0.034</td>
<td>0.232</td>
</tr>
<tr>
<td>core</td>
<td>0.023</td>
<td>0.008</td>
<td>0.234</td>
</tr>
<tr>
<td>edge</td>
<td>0.029</td>
<td>0.008</td>
<td>0.234</td>
</tr>
<tr>
<td>Brooks Range</td>
<td>0.061</td>
<td>0.047</td>
<td>0.051</td>
</tr>
<tr>
<td>core</td>
<td>0.061</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td>edge</td>
<td>0.054</td>
<td>0.047</td>
<td></td>
</tr>
</tbody>
</table>
Table 2b F_{ST}, G_{ST} and Dest values between clonal growing trees and their singleton counterparts

<table>
<thead>
<tr>
<th></th>
<th>Alaska Range</th>
<th>Interior basin</th>
<th>Brooks Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>core</td>
<td>edge</td>
<td>core</td>
</tr>
<tr>
<td>F_{ST}</td>
<td>0.025</td>
<td>0.015</td>
<td>0.012</td>
</tr>
<tr>
<td>G_{ST}</td>
<td>0.007</td>
<td>–0.003</td>
<td>0.000</td>
</tr>
<tr>
<td>Dest</td>
<td>0.035</td>
<td>–0.019</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Figure 1 (a) Map of Alaska (USGS, 2016) showing location of the investigated stands (dots). (b)–(g) Maps of the six investigated stands drawn to scale (one grid cell = 10 x 10 m), showing trees belonging to clones (differently colored circles) and singleton trees (light gray circles). The size of the circles reflects tree dbh (see scale)

254x190mm (300 x 300 DPI)
Figure 2 (a) Histogram of the number of trees in a clone and (b) maximum extension of clones (maximum distance of the pairwise comparison of all members in clone). (c) Mean crown height (distance of lowermost twigs to ground) of trees in relation to the proportion of clones in a plot (for the Interior core plot, no data are available)
Figure 3(a)–(e) Histogram of age distribution of all trees in five investigated plots with age data (classes of 10 years). Shaded portion of the bars indicates trees belonging to clones. Inset: Proportion of clonal trees for the respective age classes.

254x190mm (300 x 300 DPI)