Combinatorial Probes for High-Throughput Electrochemical Analysis of Circulating Nucleic Acids in Patient Samples

Shana O. Kelley, Jagotamoy Das, Ivaylo Ivanov, Tina Safaei, and Edward Sargent

Version Post-print/accepted manuscript

Publisher's Statement This is the peer reviewed version of the following article: Das, Jagotamoy, Ivaylo Ivanov, Tina S. Safaei, Edward H. Sargent, and Shana O. Kelley. "Combinatorial Probes for High-Throughput Electrochemical Analysis of Circulating Nucleic Acids in Clinical Samples." Angewandte Chemie International Edition 57, no. 14 (2018): 3711-3716. which has been published in final form at 10.1002/anie.201800455. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

How to cite TSpace items

Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the author manuscript from TSpace because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page.

This article was made openly accessible by U of T Faculty. Please tell us how this access benefits you. Your story matters.
Title: Combinatorial Probes for High-Throughput Electrochemical Analysis of Circulating Nucleic Acids in Patient Samples

Authors: Shana Olwyn Kelley, Jagotamoy Das, Ivaylo Ivanov, Tina Safaei, and Edward Sargent

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201800455
Angew. Chem. 10.1002/ange.201800455

Link to VoR: http://dx.doi.org/10.1002/anie.201800455
http://dx.doi.org/10.1002/ange.201800455
Combinatorial Probes for High-Throughput Electrochemical Analysis of Circulating Nucleic Acids in Patient Samples

Jagotamoy Das,[a] Ivaylo Ivanov,[a] Tina S. Safaei,[b] Edward H. Sargent,[b] and Shana O. Kelley*[a]

Abstract: The analysis of circulating tumour nucleic acids (ctNAs) provides a minimally invasive way to assess the mutational spectrum of a tumour. However, effective and practical methods for analyzing this emerging class of markers are lacking. Analysis of ctNAs using a sensor-based approach has notable challenges, as it is vital to differentiate nucleic acids from normal cells from mutation-bearing sequences emerging from tumours. Moreover, many genes related to cancer have dozens of different mutations. Here, we report an electrochemical approach that directly detects genes with mutations in patient serum by using combinatorial probes (CPs). The CPs enable detection of all of the mutant alleles derived from the same part of the gene. As of proof-of-concept we analyze mutations of the EGFR gene, which has more than 40 clinically-relevant alterations that include deletions, insertions, and point mutations. Our CP-based approach accurately detects mutant sequences directly in patient serum.

Noninvasive analysis of circulating tumour-derived nucleic acids (ctNAs) is an appealing approach for cancer monitoring, as serial blood draws are possible for repetitive and longitudinal sampling, while solid tumours require invasive biopsies. However, reliable detection of nucleic acids containing mutations that allow specific detection of ctNAs is very challenging as patient samples contain a very small percentage of mutated nucleic acids in a large background of normal nucleic acids.

Analysis of mutated nucleic acids in the blood, for example, the EGFR (epidermal growth factor receptor) and KRAS (Kirsten rat sarcoma viral oncogene homolog) genes, could allow specific monitoring of cancer-related sequences. However, for detection of these mutated ctNAs, a very sensitive and specific method is required, as mutated ctNAs are present along with a high level of normal sequences. Currently, the most commonly used methods for ctNA analysis are DNA sequencing and the polymerase chain reaction (PCR). DNA sequencing is a powerful technique for research studies, but its application is restricted due to the high cost for routine clinical use, and long turnaround time (2-3 weeks). Although conventional PCR methods can't detect mutated ctNAs as they cannot detect minor variants at levels < 20%, some PCR-based methods, such as allele-specific clamp PCR, cold-PCR (co-amplification at lower denaturation temperature-PCR), and digital PCR have successfully detected ctNAs. However, PCR methods are susceptible to false negatives and positives produced by interference from chemical species present in clinical samples; the use of this approach therefore requires trained personnel and preprocessing of samples including purification of nucleic acids. This requirement limits the use of this technique to clinical laboratories. Thus, a PCR-free method that is able to detect mutated ctNAs directly in serum or blood is urgently needed to allow liquid biopsies monitoring ctNAs to become more routine.

Chip-based electronic and electrochemical methods have been pursued as a promising alternative for clinical sample analysis because they can be automated and do not rely on costly instrumentation. Particularly, electrochemical methods have received attention because of their low cost, high sensitivity, and amenability to high levels of multiplexing. Electrochemical techniques have been employed successfully to analyze various tumour markers, and infectious pathogens, but the analysis of ctNAs for tumour-related mutations in patient samples is a new application for this type of analysis that was first described less than three years ago.

An electrochemical strategy developed by our laboratory for the analysis of a small set of point mutations in ctNAs was one of the first to address how a chip-based approach could facilitate ctNA analysis. High-surface area, three-dimensional microelectrodes were functionalized with probe sequences complementary to a sequence of interest, and hybridization of targets was read out with an electrocatalytic reporter strategy. PNA clamp molecules were used to limit cross-reactivity with wild-type nucleic acids and other mutated sequences. The technique specifically detected mutated ctNAs at physiologically-relevant levels in 30 - 40 minutes. However, the KRAS and BRAF genes only contain point mutations in ctNAs. There many other sequence alterations that may appear in ctNAs. For example, EGFR, a sequence that is often mutated in lung cancer tumours, not only contains point mutations but also deletions and insertions. However, analysis of EGFR is very challenging as it has more than 40 clinically-relevant sequence changes.
Here, we report an electrochemical approach that enables the direct analysis of genes that have large panels of sequence alterations in ctNAs from patient serum (Figure 1). We designed combinatorial probes (CPs) that are able to screen all of the possible mutations present in the same region of the gene. For example, designing one CP enables the detection of all of the deletion mutations present at exon 19 (26 somatic mutations), another CP enables the detection of all of the insertion mutations at exon 20 (6 somatic mutations), and another CP enables the detection of all of the point mutations at exon 18 (3 somatic mutations). Designing 7 probes allows us to analyze all of the 40 somatic mutations of the EGFR gene directly in patient serum. The approach described allows analysis of ctNA in patient samples with higher levels of throughput and mutational specificity relative to strategies reported previously.

Design of the combinatorial probes (CPs). The design of the CPs for analysis of ctNA mutations is illustrated in Figure 1A. We start with an analysis of EGFR. Mutations in EGFR genes are associated with a number of cancers, including lung cancer, anal cancers and glioblastoma multiforme and the potency of targeted therapies are affected by mutations in this gene.\(^2\) We design combinatorial PNA probes with variable positions where \(X\) represents equimolar concentration of A, C, G, and T, at the N-terminal of the PNA probe (Figure 1A). The combinatorial positions with the probes produce AG values for the complexes between CPs and mutated sequences more favorable than for the wild-type sequences and enables the CPs to bind mutant sequences specifically (see Supporting Table 1). Moreover, to improve specificity further, PNA clamps are used to block the wild-type sequences in solution.\(^3\)

Multiplexed chip fabrication and electrochemical detection. Photolithography was used to produce an array of forty sensors for multiplexed ctNA analysis (Figure 1C, see Supporting Information). Here, we report an electrochemical approach that enables the direct analysis of genes that have large panels of sequence alterations in ctNAs from patient serum (Figure 1). We designed combinatorial probes (CPs) that are able to screen all of the possible mutations present in the same region of the gene. For example, designing one CP enables the detection of all of the deletion mutations present at exon 19 (26 somatic mutations), another CP enables the detection of all of the insertion mutations at exon 20 (6 somatic mutations), and another CP enables the detection of all of the point mutations at exon 18 (3 somatic mutations). Designing 7 probes allows us to analyze all of the 40 somatic mutations of the EGFR gene directly in patient serum. The approach described allows analysis of ctNA in patient samples with higher levels of throughput and mutational specificity relative to strategies reported previously.\(^3\)

Multiplexed chip fabrication and electrochemical detection. Photolithography was used to produce an array of forty sensors for multiplexed ctNA analysis (Figure 1C, see Supporting Information).
Information for all experimental details.13 Gold contact pads and electrical leads were selectively patterned on the glass slides, which were pre-coated with chromium, gold, and a layer of positive photoresist. On top of this gold pattern, a layer of SU-8 was deposited and selectively developed to form an insulating top layer with 15 μm openings at the tips of the leads. Three-dimensional gold microsensors were then generated by electrodeposition of gold that produces anisotropic microneedles. Since nanostructuring enhances the sensitivity of the assay,14 we electrodeposited the Au structures with a fine layer of Pd to produce nanostructured microelectrodes (NMEs). A SEM image of a NME is shown in Figure 1D. These NMEs have been previously demonstrated to be effective in the specific detection of nucleic acids at subfemtomolar levels, even in the presence of complex biological fluids.7a-d, 8a-c, 9

We immobilized CPs specific to the mutant target of interest onto the sensors via a thiol linker (Figure 1B). After target binding and washing, we used an electrocatalytic reporter system comprised of $[\text{Ru(NH}_3)_6]^{2+}$ and $[\text{Fe(CN)}_6]^{3-}$ to readout the presence of specific mutated nucleic acids sequences.15 $[\text{Ru(NH}_3)_6]^{2+}$ is electrostatically attracted to the negatively-charged phosphate backbone of nucleic acids that bind to the probes attached on the surface of sensors and is reduced to $[\text{Ru(NH}_3)_6]^{3-}$ to generate an electrochemical signal when the electrode is biased at the reduction potential. This signal is highly amplified by adding $[\text{Fe(CN)}_6]^{3-}$, a more easily reduced anionic electron acceptor, which chemically oxidizes $[\text{Ru(NH}_3)_6]^{2+}$ back to $[\text{Ru(NH}_3)_6]^{3-}$ allowing for multiple turnovers of $[\text{Ru(NH}_3)_6]^{3-}$. This reporter system enables ultrasensitive detection of NAs without the need of enzymatic amplification. The change in current after target hybridization is used as a metric to determine target binding (typical differential pulse voltammograms (DPVs) before and after mutant positive patient serum applying is shown in Figure 1B).

Validation of the CP assay. To validate the approach, we first investigated whether CPs could identify different deletion mutations at exon 19. We individually challenged CP-functionalized NME sensors with different synthetic deletion mutant targets. For instance, we challenged CP-modified sensors with 4 deletion mutant targets individually (2235-2249 del15, 2235-2252 del18, 2236-2250 del18, 2236-2250 del15). We also compared current change when the same sensors were challenged with wild-type targets (E19DelWT). We clearly observed that there was a positive current change for mutant targets (sensor 2 of Figure 2). After observing that the CP was effective with deletion mutations, we investigated whether CP also worked for other mutations, such as; insertion mutations at exon 20 (sensor 5) and point mutations at exon 18 (sensor 1). Sensor 5 was challenged with 3 insertion mutant targets (2319-2320 ins1, 2315-2316 ins2, and 2315-2316 ins3) and wild-type target (E20InsWT). Sensor 1 was challenged with 3 point mutant targets at exon 18 (2155G>A, 2155G>T, and 2156G>C) and wild-type target (2155G>6). In addition, we tested the same sensor (sensor 1) with a solution containing a mixture 3 point mutant targets (2155G>A, 2155G>T, and 2156G>C). All of the cases we observed a clear signal rise in the presence of at least one of the mutant targets. Moreover, as expected, the current change with a mixed target solution was higher than individual targets of sensor 1. These results clearly suggest that CP can identify its targets successfully. We further validated other regular

![Figure 3. Combinatorial probe specificity.](https://example.com/figure3)

Figure 3. Combinatorial probe specificity. Sensors were modified with combinatorial probes for insertion mutations at exon 20 (Sensor 5) and wild-type probes (Sensor WT). A) The modified sensors were challenged with wild-type EGFR RNA (100 pg/μL) isolated from A549 cell lines in presence (b) and absence (a, c) of PNA clamps for wild type. Combinatorial probes hybridize with wild type EGFR RNA in absence of clamp. B) The modified sensors were challenged with ctNAs isolated from a healthy donor serum containing exon 20 fragments of EGFR before (a, c) and after (b) depletion with biotinylated oligos and streptavidin beads.
Patient sample analysis. The final goal of our effort to develop a multiplexed mutation-discriminating chip is to enable the direct analysis of mutated sequences in patient samples: we elected to use samples from non-small cell lung cancer (NSCLC) patients for this validation study. As lung cancer samples could also contain KRAS mutations, a combinatorial probe was designed for mutated sequences and a conventional probe was generated for the wild-type sequence. These probes were immobilized on a multiplexed chip along with 8 probes for EGFR analysis. A wild-type EGFR sensor (sensor 8) was used as positive control and wild-type sensor for KRAS was used as negative control. We challenged our multiplexed chip with the task of analyzing ctNAs in serum samples from NSCLC patients (Table 1 and Supporting Figure 1).

Six of the eight NSCLC patient samples were positive for EGFR mutations and four of the seven samples were positive for KRAS mutations. A threshold value for the CP assay was determined from the mean signal collected from a healthy donor serum plus three standard deviations. If the signal level collected with a patient serum was higher than the threshold value, the sample was considered to be mutant positive, and if it was lower, the sample is mutant negative. We also used a previously-validated PCR method to confirm the presence or absence of the EGFR mutations in ctNAs isolated from same patient samples, and the results agreed with our approach (Table 1).1b

It is noteworthy that in case of sample 3, the PCR assay identified only the E20 insertion mutation; our CP assay also detected the E20 insertion mutation. In addition, our approach also identified a point mutation at exon 18 for the same sample. In case of sample 6, although the PCR signal was undetermined; our new assay reported herein was successful in detecting a mutation in this sample. The CP assay thus successfully detects ctNA EGFR and KRAS mutations directly in serum of NSCLC patients. We note that clamp PCR was not able to detect mutations directly in patient serum.9 Direct analysis of patient samples, without the requirement of purification, is a significant advantage, as it eliminates any issues related to bias in the pool of sequences that are isolated.

In sum, we have analyzed ctNAs for a broad range of sequence alterations using a highly specific and sensitive electrochemical assay applicable to the analysis of serum samples of NSCLC patients. The approach has the ability to detect not only known mutations but also to detect any unknown mutations in the same region of the genes. This assay could also detect any other genes in ctNAs with many somatic mutations or other sequences with significant mutational variation; for example, genotyping of drug resistant Mycobacterium tuberculosis. The use of a multiplexed chip in this strategy allows controls and self-calibration to be performed in parallel with mutational analysis, increasing the reliability of the analysis. Minimally-invasive, serum-based analysis of ctNA provides an alternative to tumour tissue biopsies and offers new way for monitoring drug response and treatment efficacy. This approach allows for straightforward assay workflow, minimizes sample loss, and enables analysis of small samples. The significantly reduced analysis time, which can be as short as thirty minutes, makes this approach more attractive compared to PCR and sequencing methods.

Acknowledgements

Research reported in this publication was supported by the Province of Ontario though the Ministry of Research, Innovation and Science (Grant #RE05-009), the Canadian Institutes of Health Research (Emerging Team Grant RMF-111625), the Canadian Cancer Society Research Institute (Grant #70241), and the Natural Sciences and Engineering Research Council of Canada (Grant #2016-06090). The opinions, results and conclusions are solely the responsibility of the authors and no endorsement by the funding agencies is intended or inferred.

Keywords: Circulating tumour nucleic acids • EGFR • KRAS • Cancer • Electrochemistry • liquid biopsy
Communication

Angewandte Chemie International Edition

A new strategy based on combinatorial probes immobilized on nanostructured microelectrode sensors enables analysis of the mutant sequences from circulating tumour nucleic acids.

Jagotamoy Das, Ivaylo Ivanov, Tina S. Safei, Edward H. Sargent, Shana O. Kelley*

Page No. – Page No.

Combinatorial Probes for High-Throughput Electrochemical Analysis of Circulating Nucleic Acids in Patient Samples