Numerical Simulation of an Over-Expanded Supersonic and Subsonic Industrial Nozzle Flow Relevant to Flaring System

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Transactions of the Canadian Society for Mechanical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>TCSME-2018-0230.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>17-Feb-2019</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Al Qurooni, Faisal; Saudi Arabian Oil Co, South Ghawar Producing Department (SGPD); University of British Columbia, Department of Mechanical Engineering
Vakil, Ali; University of British Columbia, Department of Mechanical Engineering
Elsaadawy, Ehab; Saudi Arabian Oil Co, R&DC
Green, Sheldon; University of British Columbia, Department of Mechanical Engineering |
| Keywords: | convergent-divergent nozzle, compressible flow, turbulence models, entrainment rate, gas flaring |
| Is the invited manuscript for consideration in a Special Issue?: | 2018 CSME International Congress |
Numerical Simulation of an Over-Expanded Supersonic and Subsonic Industrial Nozzle Flow Relevant to Flaring System
Faisal Al Qurooni 1, Ali Vakil 2,3, Ehab Elsaadawy 4, Sheldon I. Green 2

1 Saudi Aramco, South Ghawar Producing Department, Udhailiyah, 31311, KSA
2Department of Mechanical Engineering, The University of British Columbia - Vancouver 6250 Applied Science Ln, Vancouver, BC, Canada V6T 1Z4
3 Coanda Research and Development Corporation 6741 Cariboo Rd, Burnaby, BC, Canada, V3N 4A3
4 Saudi Aramco, Research & Development Center, Dhahran 31311, KSA

Email: faisal.qurouni@aramco.com (F. Al Qurooni), alivakil@mech.ubc.ca (A. Vakil), ehab.elsaadawy@aramco.com (E. Elsaadawy), Sheldon.Green@ubc.ca (S. I. Green)

ABSTRACT

Flaring in oil and gas production is the controlled burning of unwanted exhaust gases to enhance safety. To improve flare combustion, gas flares are equipped with air nozzles that introduce extra oxygen and improve mixing in the combustion zone. These nozzles are operated in the subsonic, sonic, or supersonic regimes. In this paper we are concerned with turbulence modeling of the jet flow exiting from a particular convergent-divergent nozzle used in flare systems. That nozzle has convergent and divergent sections that are connected via a throat section with a finite length and constant diameter. The Realizable $k-\varepsilon$ and SST $k-\omega$ models are used to study the compressible flow within the nozzle. The velocity profiles, turbulent kinetic energy, Mach number profiles and entrainment rate coefficients predicted by both turbulence models are compared for nozzle pressure ratios (NPR) in the range. It is shown that for, both turbulence models predict nearly identical flow evolution along the nozzle. When the flow becomes supersonic, the shock surface, and consequently nozzle outlet velocity profiles, predicted by the SST $k-\omega$ model deviates slightly from the other model. The differences, however, become negligible a couple of diameters downstream of the nozzle outlet.

Keywords: Convergent-divergent nozzle flow, compressible flow, turbulence models, entrainment rate, gas flaring

1. INTRODUCTION

Gas flaring is a technique used in several industries such as gas and oil separation plants (GOSPs), oil refineries, gas plants and other petrochemical plants in which unwanted or excess gases are burned safely. Gas flares are also used to protect the plants against the danger of over pressurizing in case of emergency or critical equipment trip. The gas flaring system is very important and plants operations should cease if it is not working properly. While gas flaring is required for safety reasons, it has many drawbacks, including negative impacts on the environment (primarily due to incomplete combustion of the gas) and the waste of potentially useful resources. To mitigate these negative impacts, companies seek to eliminate or reduce gas flaring. In situations when flaring is unavoidable, it is desirable to have smokeless gas flaring (Figure 1). Saudi Aramco, the largest oil company in the world, has made a thorough analysis and study (Mashour et al. 2009) to investigate a cost effective and efficient solution to retrofit its hundreds of gas flares in Saudi Arabia. Several options were explored such as Steam-Assisted Flare tips, sonic flare tips and Low-Pressure Air-Assist. None of these solutions was deemed to be cost effective and, therefore, Saudi Aramco developed a new flare design named the High Pressure Air Assist System (HPAAS). Briefly, the system consists of convergent-divergent nozzles that surround the circumference of the flare exit tip. As these nozzles inject compressed air to the combustion zone, the resulting air entrainment from the atmosphere due to the high exit velocity provides the required air mass to yield smokeless flaring (Figure 1).

For a given nozzle shape, the flow controlling parameter is the nozzle pressure ratio (NPR). In converging nozzles (CN), as the NPR increases, the maximum flow rate is achieved when the flow speed at the nozzle exit is sonic, corresponding to the choked flow condition. A converging-diverging nozzle geometry (CDN) allows the flow to achieve supersonic speeds. For a CDN that undergoes an isentropic expansion the sonic condition is reached at the throat connecting an upstream subsonic condition to a downstream supersonic condition. In contrast, an isentropic compression within the nozzle connects an upstream supersonic condition to a downstream subsonic condition via a sonic throat (Shapiro 1953). If the flow is choked at the throat but the NPR differs from that...
required to yield isentropic flow, a combination of normal and oblique shocks is formed downstream of the throat (Andersson 2001). Numerical predictions of the compressible flow within CDN, shocks behavior and the compressible turbulent shear flow of supersonic jets have been subject of extensive studies in the last century.

Eggers (1966) conducted an analytical and experimental investigation of a supersonic jet (Mach 2.22 nozzle) to understand turbulence quantities and jet entrainment. He concluded that an eddy viscosity formulation independent of the radial coordinate, employed by other researchers, for a compressible turbulent jet was not justified. Birch and Eggers (1973) collated experimental data on developed free turbulent shear layers to facilitate the validation of the turbulence models and numerical predictions. They concluded that the available data were not sufficient to clearly establish the effect of density gradients on mixing rate. Lau et al. (1979) conducted measurements of a 51mm diameter turbulent jet at Mach 0.28, 0.90, and 1.37 using a LDV and a hot-wire anemometer. Their data indicate a decrease in the spreading rate of the mixing layer with increasing Mach number. Seiner et al. (1992) investigated the effect of jet temperature on the mixing rate, and concluded that high temperatures resulted in enhanced density fluctuations to increase the mixing rate.

Reynolds-averaged Navier–Stokes (RANS) solvers have been used by many researchers to simulate supersonic exhausts. A comprehensive review of various turbulence modelling, advantages and limitations of each approach are presented in (Georgiadis and DeBonis 2006). Koch et al. (2002) conducted a study on subsonic axisymmetric jets with flow separation using a two-equation \(k-\epsilon \) turbulence model. While the mean flow values showed a good agreement with experiment, the mixing rate predicted by the numerical modelling was lower than the experimental results, and so were the turbulent kinetic energy levels. To incorporate compressibility effects in turbulence models, and consequently to better predict the decrease in the growth rate with increasing Mach number, an additional compressibility term should be included in the turbulence transport equations (Sarkar et al. 1991; Sarkar 1991). Georgiadis et al. and Georgiadis (2006; 2006) assessed the accuracy of modified two-equation turbulence models in flow field predictions of a subsonic (Mach number 0.5) heated and unheated jet. They showed that all the modified equations provided improved predictions compared to the standard models. All the models underestimated initial jet mixing rate and the turbulence kinetic energy fields.

Xiao et al. (2009) examined experimentally and numerically the effect of both the nozzle expansion ratio and the NPR on the entrainment from CDN. The computations showed that the nozzle expansion ratio has a greater effect on the entrainment than the NPR. Among the RANS models, the SST \(k-\omega \) model compared the best with experiment, which was attributed to its ability to predict the flow separation after the shock correctly. For a fixed nozzle expansion ratio of 1.5, their experimental study showed the best mixing was achieved when the NPR was in the range of 1.4-1.6. In a numerical study conducted on CDN with Mach number in the range \(0.9 < Ma < 1.2 \) and NPR of 4 and 6, DalBello et al. (2004) found that the SST \(k-\omega \) model could match well with experimental measurements. The RANS models prediction accuracy decreases as the flow compressibility effects become more important. To account for these effects, modified RANS models were considered and their prediction performance were compared against experiment (Tandra et al. 2006; Georgiadis et al. 2006).

Sarkar and Lakshmanan (1991a, 1991b) studied compressible shear layers using a Reynolds Stress Model (RSM). When the compressibility effects were not considered explicitly, the model failed to predict the dependence of the shear layer growth rate on the Mach number. In comparison, when the compressibility effects were considered explicitly, the computed results compared better with experiment. Lijo et al. (2010) used RSM to study transient flows in a rocket propulsion nozzle which involves free and restricted shock separation, and they found RSM model results were in good agreement with experiment. Balabel et al. (2011) assessed RSM and different RANS models for gas flow in a two-dimensional CDN with steady, compressible and turbulent flow. In their investigation to predict the separation point and the shock wave location, they found that the SST \(k-\omega \) model gave the best results when compared to experiment. The objective of this paper is to study the compressible turbulent flow picture within a specific converging- diverging nozzle with a finite length throat of constant area, and specifically to compare the nozzle flow field including the axial velocity, mass entrainment, Mach number and turbulent kinetic energy, predicted by different turbulence models.

Figure 1: A flare with (right) and without (left) smokeless air, which shows the nozzles' advantage (Mashour et al. 2009).
2. NUMERICAL METHOD

In this section, the numerical formulations employed to obtain the CFD results using ANSYS Fluent 18.0 are presented. The second order upwind scheme is chosen for the spatial discretization of all equations. The SIMPLE scheme was employed for the pressure-velocity coupling.

2.1 Governing Equations

The governing equations require special treatment, i.e. closure, when the flow is turbulent. In the time-averaging of the governing equations, the physical quantity ϕ is decomposed into its mean component $\bar{\phi}$ and fluctuating component ϕ' via the Reynolds decomposition as $\phi = \bar{\phi} + \phi'$. To account for the effects of the density fluctuations due to turbulence, Favre-averaging or density-weighed averaging is adopted in turbulent compressible flows. The density-weighted average of ϕ is obtained as $\phi = \bar{\phi} + \phi''$, where $\phi = \bar{\rho}\bar{\phi}/\bar{p}$. The details of the Favre averaging can be found in Wilcox (1994).

The mass-averaged conservation of mass in terms of mean velocity vector \bar{u}_i is given by Equation (1). The governing equations for the transport of momentum is given by Equation (2). p is the mean pressure and related to mean temperature and density as $p = \bar{\rho}R\bar{T}$. The viscous stress tensor τ_{ij} for an isentropic Newtonian fluid is defined as given by Equation (3) where δ_{ij} is the Kronecker delta function, and μ is the dynamic viscosity. The Reynolds stresses $\bar{R}_{ij} = -\bar{\rho}u'_i u'_j$, arising from the Favre-averaging of the momentum equations, require modelling. One of the most common approaches to close the set of equations is to use the Boussinesq hypothesis to relate the Reynolds stresses to the mean deformation rates and the turbulent kinetic energy k as given in Equation (4). The turbulent viscosity μ_t is given by $\mu_t = \rho C_t k^2/\varepsilon$, where ε is the dissipation of turbulent kinetic energy and C_t is a constant.

The Realizable $k-\varepsilon$ employs Equation (5) and Equation (6) as transport equations for k and ε, respectively. $\bar{R}_{ij} \frac{\partial \bar{u}_i}{\partial x_j}$ is the generation of turbulence kinetic energy due to the mean velocity gradients. Y_M is the contribution of fluctuating dilation to the dissipation rate. $S = \sqrt{2}\sqrt{\bar{S}_{ij}\bar{S}_{ij}}$ is the modulus of the mean deformation rate tensor. $\sigma_k = 1.0, \sigma_\varepsilon = 1.2$ are, respectively, the turbulent Prandtl numbers for k and ε. In contrast to the standard $k-\varepsilon$ model, C_{μ} is no longer a constant but rather depends on the mean deformation and rotation rates, the angular velocity of the rotation frame, and the turbulence quantities (Reynolds 1987).

The SST $k-\omega$ employs Equations (8) and (9), respectively, as transport equations for k and the specific dissipation rate ω. σ_k and σ_ω are the turbulent Prandtl numbers for k and ω, respectively. The turbulent viscosity is computed as $\mu_t = f \rho k/\omega$, where f is a function of the strain rate magnitude, the specific dissipation rate, a limiter function, and a Reynolds number defined as $Re_\omega = \rho k/\mu_\omega$. The details of the model constants can be found in Menter (1994). This formulation accounts for the transport of the turbulence shear stress in the definition of the turbulent viscosity. The Favre-averaged energy equation is given by Equation (10). The turbulent flux $-\rho u'_i h$ is given based on the averaged enthalpy, turbulent Prandtl number, and the turbulent eddy viscosity as given in Equation (11). The Favre-averaged material derivative is defined in Equation (12).

2.2 Meshing and Boundary Conditions

Figure 2 shows the geometry of the specific nozzle studied in this paper. This geometry is used commonly in gas flares. The converging and diverging sections of this nozzle are connected via a throat with a constant diameter and a finite length. Figure 2 also shows the computational domain used for the simulations with the associated boundary conditions. The domain extends for $50r_{exit}$ downstream of the nozzle exit, where r_{exit} is the nozzle exit radius. The domain dimensions are given in Figure 2. The lateral walls, considered as the pressure outlet boundary...
condition, are extended to $15r_{exit}$ to assure their impact on the jet flow is insignificant. The typical computational mesh used in the simulations, shown in Figure 3, highlights the small mesh size used in regions of high velocity gradients and around the shock location.

Table 1: List of Governing Equations

Figure 2: The geometry of the nozzle (left) and a schematic of the computational domain used for the simulations with the associated boundary conditions (right). The dimensions of the computational domain are shown in terms of nozzle exit radius r_{exit} (not to scale).

Figure 3: The typical computational mesh used in the simulations. For the sake of illustration, only the mesh around the nozzle exit is shown.

2.3 Mesh Independency Check

To ensure that the simulations are mesh-independent, several flows were simulated with different mesh densities (number of cells was 1×10^5, 1.5×10^5 and 3×10^5 for the coarse, intermediate and fine mesh, respectively). In the refinement procedure, we refined the boundary layer mesh close to the nozzle wall, the flow region around the jet shear layer and the shock areas. Additionally, we slightly refined the mesh in the outer region of the flow. The velocity profiles at $x=2.256 \times r_{exit}$ downstream of the nozzle exit for $P_{in} = 160$ kPaa for different mesh sizes are shown in Figure 4. To estimate the discretization error, we followed the procedure recommended in Roache (1997) for the velocity profiles. The numerical uncertainty in the fine-grid solution was found to be 1.6% for the velocity profiles.

2.4 2D vs. 3D Simulations

For a highly over-expanded flow within a converging-diverging nozzle, the flow is inherently not axisymmetric (Nguyen et al. 2003). The complex pattern of the shock surfaces (oblique and normal shocks) is three-dimensional, which means that the azimuthal derivatives of quantities should be accounted for in the governing equations. However, for the range of operating conditions of interest in this study, the flow remains attached to the nozzle walls and no flow separation was observed. These characteristics should permit one to use with reasonable accuracy a 2D axisymmetric model instead of full three-dimensional modelling. Using the 2D model avoids long computational times.

To verify that the 2D axisymmetric modelling is capable of capturing the shock surfaces and flow details, some 3D simulations were conducted to compare the simulations results with those of the corresponding 2D axisymmetric simulations. The SST $k-\omega$ turbulence model was chosen for both sets of simulations. The Mach number and the pressure coefficient profiles along the nozzle symmetry axis for the same NPR are shown in Figure 5. The 2D profiles are almost identical to their 3D counterparts.

Figure 4: Velocity profile at $x = 2.256 r_{exit}$ downstream of the nozzle exit for $P_{in} = 160$ kPaa.

Figure 5: Mach number and pressure coefficient profiles along the nozzle symmetry axis for 2D axisymmetric and 3D simulation. ($P_{in} = 160$ kPaa and $P_{out} = 101$ kPaa).

2.5 Model Validation against Experimental Data

This section contains a comparison between the simulation results on the Acoustic Reference Nozzle (ARN) referenced in the experiments of Bridges and Wernet (2004) from the ANSYS Fluent solver and the previous simulations reported in Georgiadis et al. (2006). This is to validate the simulations of a nozzle flow using RANS models. The geometry details are reported in Bridges and Wernet (2004). The jet is issued from a nozzle with an exit diameter of 50.8 mm. The Setpoint 3, where the jet is unheated ($\bar{T}/T_{\infty} = 0.950$) and the compressibility
effects \((\text{Mach} = 0.513)\) on the flow evolution could be insignificant, was chosen for the comparison reported here. The NPR of this point is 1.197.

Figure 6 and Figure 7, respectively, show a comparison of the axial velocity and turbulent kinetic energy along the symmetry axis between the current simulations, the previous simulations (Georgiadis et al. 2006) and the experiments (Bridges and Wernet 2004). In Figure 6, the present simulation shows a good agreement with both the experimental data and previous simulation results.

Both the present simulation and the previous simulation predict a longer potential core than that observed experimentally. The current simulation, however, predicts a potential core shorter than the previous simulation. Furthermore, the current simulation predicts a decay rate faster than both the experimental results and the previous simulation. On the other hand, the turbulent kinetic energy (TKE) predicted by the current simulation using the SST \(k - \omega\) turbulence model is in better agreement with experimental data than the previous simulations.

A comparison of the velocity profile at different positions downstream of the nozzle exit is shown in Figure 8. Very good agreement exists in the dimensions of the potential core and shear layer between the experimental data, the earlier simulation, and the current simulation. The above results show that the utilized modeling approach in this paper is adequate to capture the flow features of the flow field studies in this investigation, especially at Mach number of 0.5.

3. RESULTS AND DISCUSSIONS

In this section, simulation results of the converging-constant throat-diverging nozzle, as shown in Figure 2, are presented. The nozzle has an exit to throat area ratio of 1.34. The flow fields are studied at different pressure ratios (NPR) in the range \(1.18 \leq \text{NPR} \leq 1.78\), corresponding to \(120 \text{ kPa} \leq P_{\text{in}} \leq 180 \text{ kPa}\). The downstream pressure is set to standard atmospheric pressure at sea level (101 kPa) and the working fluid is air. Velocity, TKE, and Mach number variations within and downstream of the nozzle are presented.

3.1 Mean Axial Velocity Profiles

Figure 9 shows a comparison of the normalized axial velocity profiles as computed by the different turbulence models for two upstream pressures: \(P_{\text{in}} = 140 \text{ kPa}\) and \(P_{\text{in}} = 160 \text{ kPa}\). The profiles are extracted at two locations downstream of the nozzle exit, \(x_1 = r_{\text{inlet}} = 2.256 \ r_{\text{exit}}\) and \(x_2 = 5 \ r_{\text{inlet}} = 11.278 \ r_{\text{exit}}\), where \(x = 0\) represents the nozzle exit.

The normalized velocity profiles predicted by different turbulence models follow each other closely at \(P_{\text{in}} = 140 \text{ kPa}\); they start with a potential core close to the jet centerline and transition to the slow moving outer flow through a shear layer. The potential core at \(x = 2.256 \ r_{\text{exit}}\) exists in \(0 < Y/r_{\text{exit}} < 0.6\). The extent of the potential core in the cross-stream direction at \(x = 11.278 \ r_{\text{exit}}\) shrinks to \(0 < Y/r_{\text{exit}} < 0.1\) due to the mixing. The SST \(k - \omega\) model predicts a slightly faster decay in the potential core compared to the Realizable \(k - \varepsilon\) model. The shear layer is contained in \(0.6 < Y/r_{\text{exit}} < 1.5\) at \(x = 2.256 \ r_{\text{exit}}\), while it has a far-reaching extent \(0.1 <\)
\(Y/r_{\text{exit}} < 3.5 \) at \(x = 11.278 r_{\text{exit}} \) (for comparison purposes the profiles at \(x = 11.278 r_{\text{exit}} \) are clipped to \(Y/r_{\text{exit}} = 2.0 \)). The flow at this inlet pressure approaches sonic conditions at the throat along the centerline.

At \(P_{\text{in}} = 160 \text{ kPaa} \) the velocity profiles predicted by the Realizable \(k-\varepsilon \) model are similar to those at the lower pressure except that the potential core reaches a higher normalized peak velocity. The SST \(k-\omega \), however, predicts a velocity deficit in the near field in the potential core, which seems unphysical. This can be seen at the centerline (\(y=0 \)) as velocity profile is dented backward between \(0 < Y/r_{\text{exit}} < 0.4 \). Note that the flow within the nozzle at this pressure is supersonic (both turbulence models predict a peak Mach number of \(\approx 1.45 \) in the diverging section), where the compressibility effects play a critical role in the flow evolution. This velocity deficit, however, disappears in the far field (at \(x \geq 11.278 r_{\text{exit}} \)). In fact, both turbulence models predict almost the same normalized axial velocity profile in the far field at \(x = 11.278 r_{\text{exit}} \) regardless of the flow condition.

Figure 9: The normalized axial velocity profiles downstream of the nozzle exit for the different turbulence models; Extraction line is at (top) \(x = 2.256 r_{\text{exit}} \) and (bottom) \(x = 11.278 r_{\text{exit}} \).

3.2 Turbulent Kinetic Energy Profiles

The normalized turbulent kinetic energy (TKE) along the axis of symmetry at \(P_{\text{in}} = 140 \text{ kPaa} \) and \(P_{\text{in}} = 160 \text{ kPaa} \) is compared between different turbulence models in Figure 10. The transport of TKE to the jet centerline and the evolution of TKE predicted by the two turbulence model is almost the same. The Realizable \(k-\varepsilon \) model, however, predicts some turbulence upstream and downstream of the nozzle exit for \(Y/r_{\text{exit}} \leq 12 \). This level of turbulence is absent in the predictions of the SST \(k-\omega \) model, which predicts almost zero turbulence along the symmetry axis up to \(Y/r_{\text{exit}} \approx 12 \), where the potential core exists.

After the end of the potential core, in the shear layer region, the diffusion of turbulence reaches to its maximum value at a downstream distance of \(X/r_{\text{exit}} \approx 18 \), where the normalized TKE graph attains a maximum value. This maximum value is slightly greater than 0.04 for the Realizable \(k-\varepsilon \) model and slightly less than 0.04 for the SST \(k-\omega \) model. The dissipation of the TKE after the peak point is slightly higher for the SST \(k-\omega \) model for \(X/r_{\text{exit}} < 22 \), and thereafter the Realizable \(k-\varepsilon \) model predicts a slightly faster decay, and consequently more mixing, farther downstream.

Figure 10: The normalized turbulent kinetic energy along the axis of symmetry predicted by the turbulence models at \(P_{\text{in}} = 140 \text{ kPaa} \) and \(P_{\text{in}} = 160 \text{ kPaa} \).

3.3 Mach Number Profiles

Figure 11 shows the Mach number profiles along the symmetry axis as predicted by both turbulence models at \(P_{\text{in}} = 140 \text{ kPaa} \) and \(P_{\text{in}} = 160 \text{ kPaa} \). Generally, both turbulence models predict almost the same Mach number evolution inside and outside the nozzle. The location of the shocks in the nozzle (when \(P_{\text{in}} \geq 160 \text{ kPaa} \)) predicted by the two models are the same. In addition, both models show that the sonic flow condition along the centerline is always reached at the constant throat around \(X/r_{\text{exit}} = -3.2 \), just upstream of the divergent section (which starts at \(X/r_{\text{exit}} = -2.556 \)).

However, when the flow is subsonic (\(P_{\text{in}} \leq 140 \text{ kPaa} \)), the SST \(k-\omega \) model predicts slightly higher flow velocities than the Realizable \(k-\varepsilon \) model in the converging and constant-throat sections (between \(-9.3 < X/r_{\text{exit}} < -2.6 \)). The difference disappears after that and the profiles perfectly match.

When the flow is supersonic (\(P_{\text{in}} \geq 160 \text{ kPaa} \)), both turbulence models predict the same Mach number profiles inside the nozzle. Outside the nozzle, there are some slightly higher values predicted by the Realizable \(k-\varepsilon \) model within the potential core, i.e., \(0 \leq X/r_{\text{exit}} \leq 10 \), followed by a slightly earlier decay in velocity.
difference disappears after that and the profiles match. Another difference between the SST $k - \omega$ and Realizable $k - \varepsilon$ models is that the former model predicts a sharp velocity decay; whereas the latter model predicts a much smoother velocity decay at the end of the potential core.

Figure 11: Mach number profile along the jet symmetry axis predicted by different turbulence model at $P_{\text{in}} = 140$ kPa and $P_{\text{in}} = 160$ kPa.

3.4 Entrainment Rate Profiles

Since this specific nozzle is used to provide gas flares with air to facilitate smokeless combustion, it is important to quantify the variation of the mass entrainment in the downstream with the upstream pressure. The total mass flow rate through a given cross-section downstream of the nozzle is denoted by M and the mass flow rate at the nozzle exit is denoted by M_{exit}. The entrainment rate coefficient is defined as:

$$K_e = \frac{\frac{dM_{\text{exit}}}{dx} (\rho_x)}{M_{\text{exit}} (\rho_x)}^{0.5}$$

(Medrano et al. 2017)

Where ρ_e and ρ_x are the initial and entrained fluid densities, respectively. K_e is found to increase linearly as shown in Figure 12. For sake of illustrations, K_e graphs at lower pressure (where nozzle flow is subsonic with $0.5 < Ma < 0.9$) and higher pressure ($1.5 < Ma < 2.0$) are not shown on the graph. However, K_e graphs at operating pressures of 120 kPa $\leq P_{\text{in}} \leq 180$ kPa almost collapse on the presented graphs with insignificant difference.

Figure 12: The entrainment rate coefficient K_e as a function of distance along the jet for different turbulence models.

4. CONCLUSIONS

Numerical studies of compressible flow in a specific converging diverging nozzle were conducted. The nozzle consists of converging and diverging sections connected via a throat section with a finite length and constant diameter. The jet generated by the nozzle is used to control the performance of typical industrial flare systems by entraining the right amount of air into the flame to assure a smokeless flame. The numerical studies characterized the nozzle performance at various pressure ratios (NPR) in the range $1.18 \leq \text{NPR} \leq 1.78$ for two different turbulence models. The mean axial velocity profiles at different streamwise locations, mass entrainment rates, the turbulent kinetic energy and Mach number along the jet centerline were presented.

In the case of subsonic nozzle flow, the normalized mean axial velocity profiles were found to be insensitive to the turbulence models used. However, for supersonic flow this insensitivity was seen only downstream of the nozzle exit and outside the potential core region, while within this region the SST $k - \omega$ model showed an unexpected deficit in the mean axial velocity profiles close to the centerline. The turbulent kinetic energy profiles for different turbulence models follow each other closely, with the Realizable $k - \varepsilon$ model predicting a slightly higher peak value.

For this nozzle design, the flow along the centerline becomes supersonic at the end of the finite-length throat right before entering the diverging part. The turbulence models capture the same normal shock location along the nozzle symmetry axis. The SST $k - \omega$ predicts a slightly higher Mach number in the converging and constant-throat parts of the nozzle when the flow is subsonic. The Realizable $k - \varepsilon$ model, on the other hand, predicts a slightly higher velocity in the potential core when the flow is supersonic. The entrainment rate coefficient increases linearly with the distance along the jet centerline, as reported in Medrano et al. (2017). Finally, it is found that the SST $k - \omega$ model, which is a superior model when the flow contains a separation region, predicts an unrealistic velocity deficit in the potential core when the flow became supersonic inside the nozzle. This velocity deficit was not associated with any flow separation at the wall as the diverging section angle in this nozzle was relatively small and no flow separation was observed for the flow.
ACKNOWLEDGEMENTS

The authors would like to thank Saudi Aramco, Natural Sciences and Engineering Research Council of Canada (NSERC) and Coanda Research and Development for their support of this research.
REFERENCES

Table 1: List of Governing Equations

Conservation of Mass

\[\frac{\partial p}{\partial t} + \frac{\partial}{\partial x_i}(\rho \hat{u}_i) = 0 \]

(1)

\[\frac{\partial}{\partial t}(\rho \hat{u}_i) + \frac{\partial}{\partial x_j}(\rho \hat{u}_i \hat{u}_j) = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j}(\tau_{ij} - R_{ij}) \]

(2)

\[\tau_{ij} = \mu \left(\frac{\partial \hat{u}_i}{\partial x_j} + \frac{\partial \hat{u}_j}{\partial x_i} - \frac{2}{3} \frac{\partial \hat{u}_k}{\partial x_k} \right) \]

(3)

Conservation of Momentum

\[\rho h = \frac{\partial}{\partial t}(\rho \hat{u}_i) + \frac{\partial}{\partial x_j}(\rho \hat{u}_i \hat{u}_j) - \rho \beta \hat{u}_i \]

(4)

Realizable k-ε

\[\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_j}(\rho \hat{u}_j k) = \frac{\partial}{\partial x_j} \left[\left(\frac{\mu + \mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} + R_{ij} \frac{\partial \hat{u}_i}{\partial x_j} - \rho \beta - Y_m \right] \]

(5)

\[\frac{\partial}{\partial t}(\rho \varepsilon) + \frac{\partial}{\partial x_j}(\rho \hat{u}_j \varepsilon) = \frac{\partial}{\partial x_j} \left[\left(\frac{\mu + \mu_t}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_j} + \rho C_1 S \varepsilon - \rho C_2 \frac{\varepsilon^2}{k + \sqrt{\varepsilon}} \right] \]

(6)

\[C_1 = \max \left[0.43, \frac{\eta}{\eta + 5} \right] \eta = \frac{k}{\varepsilon}, C_2 = 1.9 \]

(7)

\[\mu_t = \rho C_t k^2 / \varepsilon \]

(8)

SST k-ω

\[\frac{\partial}{\partial t}(\rho \omega) + \frac{\partial}{\partial x_j}(\rho \hat{u}_j \omega) = \frac{\partial}{\partial x_j} \left[\left(\frac{\mu + \mu_t}{\sigma_\omega} \right) \frac{\partial \omega}{\partial x_j} + \frac{\alpha \beta}{\alpha + \beta} R_{ij} \frac{\partial \hat{u}_i}{\partial x_j} - \rho \beta \omega^2 + \frac{1}{\rho C_2 S \omega \sigma_\omega} \frac{\partial k}{\partial x_j} \right] \]

(9)

\[\mu_t = f \rho k / \omega \]

(10)

Conservation of Energy

\[\frac{\partial}{\partial t}(\rho h) + \frac{\partial}{\partial x_j}(\rho \hat{u}_j h) = \frac{\partial}{\partial t} + \hat{u}_j \frac{\partial}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\rho \hat{u}_j \hat{u}_j \right) - \rho \frac{\partial \hat{u}_j}{\partial x_j} \]

(11)

\[\frac{\partial}{\partial t} + \hat{u}_j \frac{\partial}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\rho \hat{u}_j \hat{u}_j \right) = \frac{\partial}{\partial t} \]

(12)
List of Tables

Table 1: List of Governing Equations..5

List of Figures

Figure 1: A flare with (right) and without (left) smokeless air, which shows the nozzles' advantage (Mashour et al. 2009). ..3
Figure 2: The geometry of the nozzle (left) and a schematic of the computational domain used for the simulations with the associated boundary conditions (right). The dimensions of the computational domain are shown in terms of nozzle exit radius r_{exit} (not to scale).5
Figure 3: The typical computational mesh used in the simulations. For the sake of illustration, only the mesh around the nozzle exit is shown. ..5
Figure 4: Velocity profile at $x = 2.256 \, r_{exit}$ downstream of the nozzle exit for $P_{in} = 160 \, kPaa$5
Figure 5: Mach number and pressure coefficient profiles along the nozzle symmetry axis for 2D axisymmetric and 3D simulation. ($P_{in} = 160 \, kPaa$ and $P_{out} = 101 \, kPaa$). ...5
Figure 6: Comparison of axial velocity profile along the symmetry axis between current simulations, previous simulations, and experiments. ..6
Figure 7: Comparison of turbulent kinetic energy profile along the axis of symmetry between current simulations, previous simulations, and experiments. ..6
Figure 8: Comparison of velocity profile downstream of the nozzle exit between current simulations previous simulations, and experiments. ..6
Figure 9: The normalized axial velocity profiles downstream of the nozzle exit for the different turbulence models; Extraction line is at (top) $x = 2.256 \, r_{exit}$ and (bottom) $x = 11.278 \, r_{exit}$.7
Figure 10: The normalized turbulent kinetic energy along the axis of symmetry predicted by the turbulence models at $P_{in} = 140 \, kPaa$ and $P_{in} = 160 \, kPaa$. ...7
Figure 11: Mach number profile along the jet symmetry axis predicted by different turbulence model at $P_{in} = 140 \, kPaa$ and $P_{in} = 160 \, kPaa$. ...7
Figure 12: The entrainment rate coefficient K_e as a function of distance along the jet for different turbulence models. ...8
Figure 1: A flare with (right) and without (left) smokeless air, which shows the nozzles' advantage (Mashour et al. 2009).

Figure 2: The geometry of the nozzle (left) and a schematic of the computational domain used for the simulations with the associated boundary conditions (right). The dimensions of the computational domain are shown in terms of nozzle exit radius r_{exit} (not to scale).

Figure 3: The typical computational mesh used in the simulations. For the sake of illustration, only the mesh around the nozzle exit is shown.

Figure 4: Velocity profile at $x = 2.256 r_{\text{exit}}$ downstream of the nozzle exit for $P_{in} = 160$ kPa.
Figure 5: Mach number and pressure coefficient profiles along the nozzle symmetry axis for 2D axisymmetric and 3D simulation. (\(P_{in} = 160\) kPaa and \(P_{out} = 101\) kPaa).

Figure 6: Comparison of axial velocity profile along the symmetry axis between current simulations, previous simulations, and experiments.

Figure 7: Comparison of turbulent kinetic energy profile along the axis of symmetry between current simulations, previous simulations, and experiments.
Figure 8: Comparison of velocity profile downstream of the nozzle exit between current simulations previous simulations, and experiments.

Figure 9: The normalized axial velocity profiles downstream of the nozzle exit for the different turbulence models; Extraction line is at (top) $x = 2.256 \, r_{exit}$ and (bottom) $x = 11.278 \, r_{exit}$.
Figure 10: The normalized turbulent kinetic energy along the axis of symmetry predicted by the turbulence models at $P_{in} = 140$ kPaa and $P_{in} = 160$ kPaa.

Figure 11: Mach number profile along the jet symmetry axis predicted by different turbulence model at $P_{in} = 140$ kPaa and $P_{in} = 160$ kPaa.

Figure 12: The entrainment rate coefficient K_e as a function of distance along the jet for different turbulence models.