Investigation of (Al₂O₃ & copper) water nanoparticles shape, slip effects and heat transfer on steady physiological delivery of MHD hybrid nanofluid.
Study of (Al₂O₃ & copper)/ water nanoparticles shape, slip effects and heat transfer on steady physiological delivery of MHD hybrid nanofluid.

Naheeda Iftikharᵃᵇ (Corresponding author)

ᵃDepartment of Mathematics, University of Balochistan, Quetta, Pakistan
ᵇDepartment of Mathematics, BUITEMS, Quetta, Pakistan

Email: naheeda_iftikhar@yahoo.com

ᵃ*Abdul Rehman: Department of Mathematics, University of Balochistan, Quetta, Pakistan
ᵇ*Hina Sadaf: DBS&H, CEME, National University of Sciences and Technology, Islamabad, Pakistan
ᶜ*Saleem Iqbal: Department of Mathematics, University of Balochistan, Quetta, Pakistan

Email: saleemiqbal81@yahoo.com

Abstract

The paper contains the analytical investigation of magnetohydrodynamic (MHD) flow of (Copper & Al₂O₃)/ water hybrid nanofluid with unstable peristaltic motion. Three different geometries (such as bricks, cylinder and platelets) along with velocity and thermal slip conditions are studied in detail in order to reach the precise solution. Flow geometry of a non-uniform tube of finite length, experimental values of base fluid and considered nanoparticles are taken into account to examine the theoretical investigation of formulated equations. Dimensionless control equations which are subject to physically realistic boundary conditions are closely studied to obtain precise results. The shape effects of nanoparticles on velocity, temperature distribution and heat transfer on the length of the non-uniform tube with variation of the various flow parameters are discussed in a graphical description to understand the theoretical aspects in order to validate the medical analysis. The observations from the analysis states that (Copper & Al₂O₃)/ water carry maximum velocity for smaller values of slip parameters. Temperature distribution for heat absorption parameter are more significant as fluid flow accelerates when large values are chosen. Large values of thermal slip parameter yield enhancement in pressure gradient and cu-water nanofluid.
has higher impact than hybrid nanofluid. Platelets shape nanoparticles of hybrid nanofluid has more significant effect on pressure gradient as compare to cylinder and bricks shape nanoparticles of Cu-water nanofluid. An intrinsic property of peristaltic transport i.e trapping is also discussed. The trapped bolus decreases for platelets and cylinder shapes nanoparticles, whereas, the size of the trapped bolus increases for bricks shapes nanoparticles. This model is applicable to a drug delivery system and to design the micro peristaltic pump for transporting nanofluids.

Keywords: Peristaltic flow; Hybrid nanofluid; MHD; Shape effects; Exact solution

1. **Introduction**

The word "peristaltic movement" was derived from the Greek "peristaltikos" meaning clenching and compression. Peristaltic motion is a mechanism of fluid transport through deformable blood vessels with the aid of progressive contraction / expansion along the vessel. This is an important mechanism of fluid transport in different parts of physiological system.

Peristaltic flow also appears in the transport of urine from the kidneys to the bladder, sperm movement in the centrifuge of ducts of the male reproductive tract, vascular motion of small blood vessels such as arterioles, venues and capillaries. Peristaltic motion is practiced in industrial machines such as cardiopulmonary devices and roller pumps. Peristaltic apparatus was first clinically studied in articles written by Bayliss and Starling [1], however, Latham [2] theoretically examined the peristaltic movement using the principle of fluid dynamics. The study of Jaffrin and Shapiro [3] reveals various parameters of same process related to analysis of peristaltic pumps. Kumar et al. [4] studied transient peristaltic pumps in finite length tubes using permeable walls.

The interaction between peristaltic movement and heat transfer plays an important role in biomedicine. The same interaction has been analyzed to study the usage for hydrological, irrigation
and drainage problems as well as biological and environmental issues. The flow of nanofluids with heat transfer is a significant area of research for a variety of industrial and technical applications. Recently, Conventional heat transfer fluids have been substituted by advanced liquids like nanofluorescence because it improves the heat transfer and flow characteristics of the fluid. The usage of nanoparticles in the heat exchanger not only reduces water flow but also reduces the volume and mass of the heat exchanger. Later, many examiners have erudite the functioning of heat exchangers by using nanofluid which showed definite improvement in the performance. In the beginning, Nanoparticles are used by Choi [5] which improved the thermal conductivity and rate of heat transfer in fluids. Nonetheless, few studies have been conducted on nanofluids in which various nanoparticles are dispersed at the same time in a base fluid commonly known as hybrid nanofluid. These nanofluids (hybrid) have many practical applications in real life. Ho a [6] have concluded that hybrid nanofluids, those work at very temperature, can effectively replace convective refrigerant. Hybrid nanofluids are the fluids that offer extremely better heat transfer and thermal properties than convective heat transfer fluids (oil, water and ethylene glycol) and nanofluids with single nanoparticles. This new nanotechnological fluid is synthesized by scattering two different nanoparticles in a conventional heat transfer fluid.

A substantial research is being conducted validating its use in electro and biosensors. Sphere/carbon nanotube particles’ applications on nanofluid was described by Han et al [7]. Stable nanofluid are formed when hybrid nanoparticles are dispersed to poly-alpha-olefin with a small amount of surfactants. An increase of 21% for particle volume fractions of 0.2% in effective thermal conductivity of fluids is observed in results.

Nine et al. [8] characterized the dispersion of CuO₂ and Cu - CuO₂ nanoparticles for the thermal enhancement. Thermal Performance of ZnO - TiO₂ nanofluid is analyzed by Toghraie et al. [9]
which deals with temperature and concentration of nanoparticles. A recent review of hybrid nanofluid is being conducted by Sarkar et al. [10] who identifies hybrid nanofluids as perfect medium for effective heat transfer, however, many aspects in this field are still unexplored and provide opportunity for researchers to dwell their research.

Almunia has low thermal conductivity of the metal nanoparticles but it does possess useful properties such as mass, chemical interness and stability. Aluminum, Copper, Silver and other metal nanoparticles possesses high thermal conductivity, however, the use of metal nanoparticles for nanofluid is limited because of strength and consistency of reactivity. The same properties of metallic, non-metallic nanoparticles and their compounds can improve stability and thermophysical property of nanofluids.

Han and Rhi [11] considered hybrid nanofluids and examined the thermal performance of channeled heat pipes. Selvakumar [12] examined heat transfer and pressure drop properties with Cu-Al₂O₃ / water hybrid nanofluid for electronic sinks and compared the hybrid Nanofluid (as cooling water) with deionized water and convective heat transfer. In addition, Suresh [13] studied an increase of 13.56% in Nusselt number of laminar flow convection using uniformly heated round tube, however, he observed maximum increase in Nusselt number. Nimmagada [14] examined the heat transfer properties of hybrid nanofluids (Al₂O₃ + Ag) in the microchannel and ascertained coefficient of convective heat transfer. Allahyar et al. [15] investigated thermal performance of hybrid nanofluid at constant wall temperature in a curved heat exchanger and exhibited extreme heat transfer gain of 11.59%. Huang et al. [16] experimented heat transfer properties of hybrid nanofluid (Almuminoxide – Multiwall carbon nano tube) in Chevron Corrugated Sheet heat exchangers and introduced the highest coefficient of heat transfer for a given power pump. Takabi et al. [17] investigated hybrid aqueous suspension on the laminar convection effect of
Aluminaoxide and Copper nanoparticles. Devi [18] performed numerical studies of three-dimensional hybrid nanofluid (Cu- Al$_2$O$_3$ / water) flows on Lorentz force tensile sheets under Newtonian heating. Theoretically, limited studies on heat transfer with nanofluid and hybrid nanofluid phenomena are provided in literature like [19-34]. Few other studies [35-50] are also useful for this theoretical approach.

Magneto hydrodynamics (MHD) deals with the movement of highly conductive fluids through magnetic fields. Specifically, peristaltic motion in the existence of a magnetic field can be detected by conductivity such as geothermal source analysis, MHD generator design, hyperthermia therapy, drug delivery, elimination of arterial occlusion, MHD compressor, nuclear fuel debris treatment, underground control diffusion and contamination of chemical waste associated with processes related to material motion.

This work describes the hydrodynamic performance, thermal behavior of water-based hybrid suspension in a non-uniform tube for MHD flow. Analytical solutions were obtained for governing equations. Pertinent results for various parameters embedded in the system such as temperature, velocity, pressure gradient and pressure rise are discussed quantitatively and graphically. Further, this research work studies the comparison between the hydrodynamic and thermal behavior of the hybrid suspension by using a nanofluid having the same volume fraction for both nanoparticles and pure water. Theoretical importance and specialized utilization of this type of flow model makes it relevant in the field of mechanical engineering.
Nomenclatures

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r^$, $z^$</td>
<td>radial and axial direction in wave frame</td>
</tr>
<tr>
<td>d^*</td>
<td>wave speed</td>
</tr>
<tr>
<td>λ^*</td>
<td>wave length</td>
</tr>
<tr>
<td>k^*</td>
<td>non-uniform parameter</td>
</tr>
<tr>
<td>Φ^*</td>
<td>heat source/sink parameter</td>
</tr>
<tr>
<td>ε</td>
<td>Amplitude ratio</td>
</tr>
<tr>
<td>p^*</td>
<td>Pressure</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds’s number</td>
</tr>
<tr>
<td>l_2^*</td>
<td>Radius of inner tube</td>
</tr>
<tr>
<td>L^*</td>
<td>velocity slip parameter</td>
</tr>
<tr>
<td>K_{f^*}</td>
<td>Thermal conductivity parameter</td>
</tr>
<tr>
<td>m^{**}</td>
<td>Different shape models</td>
</tr>
<tr>
<td>M^*</td>
<td>Hartmann number</td>
</tr>
</tbody>
</table>

2. Mathematical Formulation

The geometric model of the peristaltic flow phenomenon for two dimensional flow of an incompressible, electrically conducting viscous fluid with hybrid nanoparticles via a non-uniform vertical tube (described in Fig.1 and Fig.2) is taken as

$$ R^*_2 = H^* = l'(Z^*) + b^* \sin \frac{2\pi}{\lambda^*} (Z^* - d^* t^*). $$

Whereas $l^*(Z^*) = l^* + k^* Z^*$ is the half width of the inner tube at any axial distance Z^* from inlet and l_2 is the half width of the inlet, b^* is the wave amplitude, λ^* is wavelength, Z^* axial coordinate, d^* shows the wave velocity, t^* is the time and k^* is the non uniformity constant, when $k^* \rightarrow 0$, the non-uniform tube reduces to a uniform tube.
The geometry of peristaltic motion is approached to a finite length of non-uniform tube whereas sinusoidal waves are travelling along the flow direction. Velocity slip, thermal slip and different shape effects are also employed. Flow equations are modelled by using cylindrical polar coordinate system \((r^*,0,z^*)\) and reformed with low-Reynolds number rule and under supposition of long wavelength. \(z^*\)-axis is taken along the axis of the tube. The magnitude for temperature \(T^*\) at the wall of the tube \((R^* = R_2^*)\) are denoted as \(T_1^*\), whereas, (Copper & Al\(_2\)O\(_3\)) nanoparticles and (water) base fluid have been considered in thermal stable environment. The mass, momentum and energy conservation equations along with nanoparticles and MHD can be termed as:

Fig. 1

Fig. 2

Flow Geometry

It is not an easy preposition to reach an equation that is universal for both compressible and incompressible flow regimes, hence, precise solution for both equations cannot be obtained in totality. This is because of the difference in mathematical characters of governing equations, hence, problems regarding fluid mechanism are solved for one of these equations.
Continuity Equation

\[\frac{\partial}{\partial \theta} + \nabla \cdot (\bar{v}) = 0, \tag{1} \]

For incompressible flow Eq. (1) reduces to \(\nabla \cdot \bar{v} = 0 \)

\[\nabla \cdot \bar{v} = \frac{1}{r^*} \frac{\partial}{\partial r^*} (r^* U^*) + \frac{1}{r^*} \frac{\partial v'}{\partial \theta^*} + \frac{\partial w'}{\partial z^*} \tag{2} \]

By using our assumptions \((r^*, 0, z^*)\) Eq. (2) becomes

\[\nabla \cdot \bar{v} = \frac{1}{R^*} \frac{\partial}{\partial R^*} (R^* U^*) + \frac{\partial w^*}{\partial Z^*} \]

\[\frac{\partial U^*}{\partial R^*} + \frac{\partial W^*}{\partial Z^*} + \frac{U^*}{R^*} = 0 \tag{3} \]

Momentum Equation

Linear momentum conservation equations can also be termed as Navier-Stokes equation. There are many other forms to write the same equation. It is possible to write it in many different forms. The reduction in viscous stress tensor for incompressible flows can be expressed as:

\[\rho^*_{\text{inf}} \left[\frac{\partial \bar{v}}{\partial \theta} + (\bar{v} \cdot \nabla) \vec{v} \right] = -\nabla P^* + \nabla \cdot \tau R^* + \rho^*_{\text{inf}} \tag{4} \]

\[\rho^*_{\text{inf}} \left[\frac{\partial \bar{v}}{\partial \theta} + (\bar{v} \cdot \nabla) \vec{v} \right] = -\nabla P^* + \mu \nabla^2 \vec{v} + \rho^*_{\text{inf}} \tag{5} \]

Momentum Eq. in cylindrical coordinate system after the contribution of magnetic field in axial direction are:

\[\rho^*_{\text{inf}} \left[\frac{\partial U^*}{\partial t^*} + U^* \frac{\partial U^*}{\partial R^*} + W^* \frac{\partial U^*}{\partial Z^*} \right] = -\frac{\partial P^*}{\partial R^*} + \mu^*_{\text{inf}} \left[\frac{1}{R^*} \frac{\partial}{\partial R^*} \left(R^* \frac{\partial U^*}{\partial R^*} \right) + \frac{\partial^2 U^*}{\partial Z^*^2} - \frac{U^*}{R^*} \right] \tag{6} \]

\[\rho^*_{\text{inf}} \left[\frac{\partial U^*}{\partial t^*} + U^* \frac{\partial W^*}{\partial R^*} + W^* \frac{\partial W^*}{\partial Z^*} \right] = -\frac{\partial P^*}{\partial Z^*} + \mu^*_{\text{inf}} \left[\frac{1}{R^*} \frac{\partial}{\partial R^*} \left(R^* \frac{\partial W^*}{\partial R^*} \right) + \frac{\partial^2 W^*}{\partial Z^*^2} \right] \]
Energy Equation

Energy Eq. can be expressed as:

$$
(\rho \beta)^*_{\text{hnf}} g^* (T^* - T_i) - \frac{\sigma_{\text{hnf}}^* B_o^{*2}}{\sigma_f^*} W^*
$$

(7)

h is the enthalpy which is in connection with specific internal energy. T^* represents absolute temperature and \varnothing shows constant heat absorption parameter.

Pressure term on R.H.S of Eq. (8) is commonly ignored. In order to find energy equation the conduction heat transfer is directed by Fourier’s law with existence of k^*_{hnf} (thermal conductivity) of the hybrid nanofluid. Also note that radiative heat transfers and internal heat generation due to a possible chemical or nuclear reaction are neglected. For an ideal gas it is possible to use the following relations to relate enthalpy and internal energy to temperature so that energy equation can be written as temperature being the only unknown.

$$
dh = c_p^* dT^*
$$

(9)

By taking into account the fact that for incompressible flows, density is constant. By using the relation in Eq. (9), the energy equation takes the following form

$$
(\rho^* c_p^*)_{\text{hnf}} = \left[\frac{\partial T^*}{\partial t^*} + (\vec{V} \cdot \nabla) T^* \right] = k^*_{\text{hnf}} \nabla^2 T^* + \varnothing
$$

(10)

The energy equation is

$$
(\rho^* c_p^*)_{\text{hnf}} \left[\frac{\partial T^*}{\partial t} + U^* \frac{\partial T^*}{\partial R} + W^* \frac{\partial T^*}{\partial Z} \right] = k^*_{\text{hnf}} \left[\frac{\partial^2 T^*}{\partial R^2} + \frac{1}{R^2} \frac{\partial T^*}{\partial R} + \frac{\partial^2 T^*}{\partial Z^2} \right] + Q^*_0
$$

(11)
In all above equations, σ^{*}_{hnf} shows the density of hybrid nanofluid, U^{*} and W^{*} are the relatively velocity components in radial and axial directions, $(\rho c_{p})^{*}_{hnf}$ represents heat capacity of hybrid nanofluid, μ^{*}_{hnf} is viscosity of hybrid nanofluid and k^{*}_{hnf} represents thermal conductivity of hybrid nanofluid, P^{*} is pressure, g^{*} is the acceleration due to gravity, Q^{*}_{0} constant heat absorption parameter and β^{*}_{hnf} is the thermal expansion coefficient of hybrid nanofluid.

Initially we have added the solid volume fraction of Cu (φ_{1}) to the base fluid with 0.1 vol (i.e., $\varphi_{1} = 0.1$ i.e. fixed hereafter) nanoparticle and subsequentially Al$_2$O$_3$ (φ_{2}) is added with variation of volume fractions (0.005 $\leq \varphi_{2} \leq$ 0.06) for the formation of (Cu− Al$_2$O$_3$/Water) hybrid nanofluid.

Whereas, thermophysical properties for water intervening hybrid nanofluid are demarcated as follows$^{[51]}$:

<table>
<thead>
<tr>
<th>Properties</th>
<th>Nanofluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Diffusivity</td>
<td>$\alpha^{}_{nf} = \frac{k^{}{nf}}{(\rho c{p})^{*}_{nf}}$</td>
</tr>
<tr>
<td>Viscosity</td>
<td>$\mu^{}_{nf} = \frac{\mu^{}_{f}}{(1 - \varphi)^2.5}$</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>$\sigma^{}_{nf} = \sigma^{}{bf} \left[\frac{\sigma{s}(1 + 2\varphi) + 2\sigma^{}{bf}(1 - \varphi)}{\sigma{s}(1 - \varphi) + \sigma^{}_{bf}(2 + \varphi)} \right]$</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>$\frac{k^{}_{nf}}{k^{}{f}} = \frac{k^{*}{s} + (m - 1)k^{}_{bf} - (m - 1)(k^{}{bf} - k^{*}{s})\varphi}{k^{}_{s} + (m - 1)k^{}{bf} + (k^{*}{bf} - k^{*}_{s})\varphi}$</td>
</tr>
<tr>
<td>Density</td>
<td>$\rho^{}_{nf} = \rho^{}{f}(1 - \varphi) + \varphi\left(\rho^{*}{s}/\rho^{*}_{f}\right)$</td>
</tr>
<tr>
<td>Heat capacity</td>
<td>$(\rho c_{p})^{}{nf} = (1 - \varphi)\left[(1 - \varphi)(\rho c{p})^{}{f} + \varphi(\rho c{p})^{*}_{s}\right]$</td>
</tr>
<tr>
<td>Thermal expansion</td>
<td>$(\rho \beta)^{}_{nf} = (\rho \beta)^{}{f}\left[(1 - \varphi) + \varphi\left((\rho \beta)^{*}{s}/(\rho \beta)^{*}_{f}\right)\right]$</td>
</tr>
</tbody>
</table>
Properties

Hybrid Nanofluid

Thermal Diffusivity

\[\alpha^*_{\text{hnf}} = \frac{k^*_{\text{hgf}}}{(\rho c_p)^*_{\text{hgf}}} \]

Viscosity

\[\mu^*_{\text{hnf}} = \frac{\mu^*_{\text{f}}}{(1 - \varphi_2)^{2.5}(1 - \varphi_1)^{2.5}} \]

Electrical conductivity

\[\sigma^*_{\text{hnf}} = \sigma^*_{\text{bf}} \left[\frac{\sigma_s (1 + 2 \varphi_2) + 2 \sigma^*_{\text{bf}} (1 - \varphi_2)}{\sigma_s (1 - \varphi_1) + \sigma^*_{\text{bf}} (2 + \varphi_1)} \right] \]

Where \(\sigma^*_{\text{bf}} = \sigma^*_{\text{f}} \left[\frac{\sigma_s (1 + 2 \varphi_1) + 2 \sigma^*_{\text{bf}} (1 - \varphi_1)}{\sigma_s (1 - \varphi_2) + \sigma^*_{\text{bf}} (2 + \varphi_2)} \right] \)

Thermal conductivity

\[\frac{k^*_{\text{hnf}}}{k^*_{\text{bf}}} = \frac{k^*_{s2} + (m - 1)k^*_{bf} - (m - 1)(k^*_{bf} - k^*_{s2})\varphi_2}{k^*_{s2} + (m - 1)k^*_{bf} + (k^*_{bf} - k^*_{s2})\varphi_2} \]

Where \[\frac{k^*_{bf}}{k^*_{f}} = \frac{k^*_{s1} + (m - 1)k^*_{f} - (m - 1)(k^*_{f} - k^*_{s1})\varphi_1}{k^*_{s1} + (m - 1)k^*_{f} + (k^*_{f} - k^*_{s1})\varphi_1} \]

Density

\[\rho^*_{\text{hnf}} = \rho^*_{\text{f}} (1 - \varphi_1) (1 - \varphi_2) + \varphi_1 \left(\frac{\rho^*_{s1}}{\rho^*_{f}} \right) + \varphi_2 \rho^*_{s2} \]

Heat capacity

\[(\rho c_p)^*_{\text{hnf}} = (1 - \varphi_2) \left[(1 - \varphi_1) (\rho c_p)^*_{\text{f}} + \varphi_1 (\rho c_p)^*_{s1} \right] + \varphi_2 (\rho c_p)^*_{s2} \]

Thermal expansion

\[(\rho \beta)^*_{\text{hnf}} = (\rho \beta)^*_{\text{f}} (1 - \varphi_2) \left[(1 - \varphi_1) + \varphi_1 \left(\frac{(\rho \beta)^*_{s1}}{(\rho \beta)^*_{f}} \right) \right] + \varphi_2 (\rho \beta)^*_{s2} \]

Where \(\varphi_1 \) and \(\varphi_2 \) are the correspondence of solid volume fraction of Al2 O3 and Cu nanoparticles. Whereas \(s1 \) denotes solid nanoparticles of copper, \(s2 \) solid nanoparticles of Alumina, \(f \) represents fluid, \(nf, hnf \) shows nano and hybrid nanofluid respectively. \(\varphi_1, \varphi_2 = 0 \) corresponds to the pure water (without suspension of nanoparticles).

<table>
<thead>
<tr>
<th>Nanoparticles Category</th>
<th>Shape Factor (m'')</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bricks</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Cylinders</td>
<td>4.9</td>
<td></td>
</tr>
</tbody>
</table>
According to the geometry, the pertinent boundary conditions for the raised problem (shown in Fig. 1, Fig. 2) are defined as:

\[W^* = 0, \quad \text{at} \quad R^* = R^*_1, \]
\[W^* - W_w^* = -L^* \tau \kappa Z^*, \quad \text{at} \quad R^*_2 = H^* = l^* (Z^*) + b^* \sin \frac{2\pi}{\lambda^*} (Z^* - d^* t^*), \]
\[T^* = T_0^*, \quad \text{at} \quad R^* = R^*_1, \]
\[T^* - T_1^* = -\gamma \frac{\partial T^*}{\partial R^*}, \quad \text{at} \quad R^* = R^*_2, \]

Where \(W^* \) is the fluid velocity, whereas \(H^* \) symbolizes the non-uniform wave in which \(l^* (Z^*) \) is the non-uniform radius, \(l^* \) (radius of inner tube), \(b^* \) (wave amplitude) and \(\gamma^* \) (thermal slip) and \(L^* \) (velocity slip) are the dimensional parameters.

Non-dimensional parameters are given below to linearize the problem:

\[r^* = \frac{R^*}{l^*_2}, \quad z^* = \frac{Z^*}{\lambda^*}, \quad u^* = \frac{\lambda^* U^*}{l^*_2 d^*}, \quad w^* = \frac{W^*}{d^*}, \quad \frac{P^*}{\lambda^*} = \frac{p^*}{d^*}, \quad \frac{t^*}{d^*} = \frac{d^* t^*}{l^*_2}, \quad L = \frac{\mu^*_f L}{l^*_2}, \quad \rho^*_f = \frac{\gamma^*_f}{l^*_2}. \]
\[\text{Re} = \frac{\rho_f^* d^* l^*_2}{\mu_f^*}, \quad \text{Bo} = \frac{T^* - T_0^*}{T^* - T_1^*}, \quad l^*(Z^*) = l^*_2 + k^* z^*, \quad h^* = \frac{H^*}{l^*_2} = 1 + \frac{k^* z^*}{l^*_2} + \varepsilon \sin 2\pi(z^* - t^*), \]
\[\tau = \frac{l^*_2 \tau^*}{d^* \mu_0}, \quad K^* = \frac{K}{l^*_2}, \quad B^* = \frac{Q^* d^*_2}{(T^*_0 - T^*_1)k^*_f}, \quad G_r = \frac{(T^*_0 - T^*_1)g^* \beta^*_f \rho^*_f l^*_2}{d^* \mu^*_f}, \quad M^* = \frac{P^*_f}{\mu^*_f} B_0^* d^*. \]

\(B^*, L, \gamma \) denote heat absorption, velocity and thermal slip parameter. By arranging Eq. (14) into Eqs. (3), (6), (7) and (11) and taking the conditions of long wavelength approach (peristaltic wavelength is much larger than tube) qualifies that \(\delta \rightarrow 0 \) and Reynolds number is relative to viscous damping forces. By omitting the terms containing \(R_e \rightarrow 0, \delta \) and higher we have the next equations, numbers also vanishes. \(\delta \rightarrow 0 \) reflects curvature effects and \(R_e \rightarrow 0 \) contradicts convective inertial forces. Implementation of these approximations to Eq. (3), (6), (7), (11) and (13) results:
\[\frac{\partial p^*}{\partial r^*} = 0, \]
\[-\frac{\partial p^*}{\partial z} + \frac{\mu^* \mu_{hf}}{\mu_f} \left[\frac{1}{r^*} \frac{\partial}{\partial r^*} \left(r^* \frac{\partial w^*}{\partial r^*} \right) \right] + \frac{(\rho \beta)^*_{hf}}{(\rho \beta)_f} G_f \theta^* - \frac{\sigma^*_{hf}}{\sigma^*_f} \frac{M^*}{r^*} w^* = 0 \]
\[\alpha^*_{hf} \left[\frac{1}{r^*} \frac{\partial \theta^*}{\partial r^*} + \frac{\partial^2 \theta^*}{\partial r^* \partial z} \right] + B^* \left(\frac{\rho c_p}{\rho c_p}_{hf} \right)_f = 0, \]
Where \(\alpha^*_{hf} = \frac{k^* \rho c_p}{(\rho c_p)^*_{hf}} \), by using in Eq. (17) we get the following form
\[\frac{k^* \rho c_p}{(\rho c_p)^*_{hf} \alpha_f} \left[\frac{1}{r^*} \frac{\partial \theta^*}{\partial r^*} + \frac{\partial^2 \theta^*}{\partial r^* \partial z} \right] + B^* \left(\frac{\rho c_p}{\rho c_p}_{hf} \right)_f = 0, \]
\[\frac{k^* \rho c_p}{\alpha_f} \left[\frac{1}{r^*} \frac{\partial \theta^*}{\partial r^*} + \frac{\partial^2 \theta^*}{\partial r^* \partial z} \right] + B^* \rho c_p_{hf} = 0, \]
By considering \(A = \frac{\mu^* \mu_{hf}}{\mu_f}, T = \frac{(\rho \beta)^*_{hf}}{(\rho \beta)_f}, F = \frac{\sigma^*_{hf}}{\sigma^*_f}, S = (\rho c_p)^*_{hf} \) and \(H = \frac{k^* \rho c_p}{\alpha_f} \). Using in Eq. (16) and (19), we get
\[\frac{\partial p^*}{\partial r^*} = 0, \]
\[-\frac{\partial p^*}{\partial z} + A \left[\frac{1}{r^*} \frac{\partial}{\partial r^*} \left(r^* \frac{\partial w^*}{\partial r^*} \right) \right] + TG_f \theta^* - F \frac{M^*}{r^*} w^* = 0 \]
\[H \left[\frac{1}{r^*} \frac{\partial \theta^*}{\partial r^*} + \frac{\partial^2 \theta^*}{\partial r^* \partial z} \right] + B^* S = 0, \]
With boundary conditions
\[\theta^* = 1 \text{ at } r^* = r_1^* \]
\[\theta^* + \gamma \frac{\partial \theta^*}{\partial r^*} = 0 \text{ at } r^* = r_2^* \]
\[w^* = -1 \text{ at } r^* = r_1^* \]
\[w^* + LA \frac{\partial w^*}{\partial r^*} = 0 \text{ at } r^* = r_2^* \]
Numerical values are apropos in Table 1.
Table 1. Thermophysical properties of fluid and nanoparticles.\(^{47}\)

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Fluid Phase</th>
<th>Solid Nanoparticles</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c^*_ρ) ((\text{J/kgK}))</td>
<td>4179</td>
<td>385</td>
</tr>
<tr>
<td>(\rho^*) ((\text{kg/m}^3))</td>
<td>997.1</td>
<td>8933</td>
</tr>
<tr>
<td>(K^*_f) ((\text{W/mK}))</td>
<td>0.613</td>
<td>401</td>
</tr>
<tr>
<td>(σ(\text{s/m}))</td>
<td>5.5×10⁻⁶</td>
<td>59.6×10⁶</td>
</tr>
</tbody>
</table>

3. Solution to the problem

Exact solution of Eq. (21) and (22) by using boundary conditions of (23) and (24) can be determined by Cauchy Euler’s method.

\[
\theta^* = -\frac{BS(r^*)^2}{4H} + C_1 Log(r^*) + C_2
\]

\[(25) \quad w^* = C_3(r^*)^{-M^*\sqrt{\frac{\theta^*}{A}}} + C_4 (r^*)^M^*\sqrt{\frac{\theta^*}{A}} - \frac{\partial P/\partial Z}{A} \left(\frac{(r^*)^2}{4 - (M^*)^2} \right) - \frac{T^* G}{A}
\]

\[
\left(\frac{(r^*)^2}{4 - (M^*)^2} \right) + \frac{BS(r_1^* + r_2^*)^2}{4H} \left(\frac{(r_2^*)^2 - (r_1^*)^2}{16 - (M^*)^4} \right) + \frac{BS(r_1^* r_2^*)}{4H} \left(\frac{(r_2^*)^2 - (r_1^*)^2}{4 - (M^*)^2} \right) - \frac{2(r^*)^2}{(4 - (M^*)^2^2)} + \frac{2\gamma r_2^*}{\gamma r_1^* + r_2^* Log(r_2^*)}
\]

(26)

Where \(C_1, C_2, C_3\) and \(C_4\) are constants calculated by Mathematica.

The pressure rise \(ΔP^*\) is defined as follows

\[
ΔP^* = \int_0^{h^*} \frac{dP^*}{dz^*} dz^*,
\]

(27)

Velocities in expressions of stream function relation can be defined as

\[
u^* = -\frac{1}{r^*} \frac{∂\Psi}{Cz^*}, \quad w^* = \frac{1}{r^*} \frac{∂\Psi}{Cz^*} \quad \text{at} \quad r^* = h^*
\]

And heat transfer on walls are expressed as

\[
Z_2 = \left(\frac{∂θ^*}{∂r^*} \right) \left(\frac{∂h^*}{∂z^*} \right) \quad \text{at} \quad r^* = r_2^*
\]

(28)
15

Table 2. Heat transfer result for both fluids.

<table>
<thead>
<tr>
<th>z^*</th>
<th>Z_2 for $B=1.0$ Cu/Water</th>
<th>Z_2 for $B=1.0$ (Copper & Al$_2$O$_3$)/water</th>
<th>Z_2 for $B=1.5$ Cu/Water</th>
<th>Z_2 for $B=1.5$ (Copper & Al$_2$O$_3$)/water</th>
<th>Z_2 for $B=2.0$ Cu/Water</th>
<th>Z_2 for $B=2.0$ (Copper & Al$_2$O$_3$)/water</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.02</td>
<td>0.779768</td>
<td>0.779896</td>
<td>0.779487</td>
<td>0.779679</td>
<td>0.779487</td>
<td>0.779463</td>
</tr>
<tr>
<td>-0.82</td>
<td>0.745714</td>
<td>0.747253</td>
<td>0.742339</td>
<td>0.744648</td>
<td>0.742339</td>
<td>0.742042</td>
</tr>
<tr>
<td>-0.62</td>
<td>0.782827</td>
<td>0.783864</td>
<td>0.780552</td>
<td>0.782108</td>
<td>0.780552</td>
<td>0.780351</td>
</tr>
<tr>
<td>-0.42</td>
<td>0.826092</td>
<td>0.823717</td>
<td>0.831299</td>
<td>0.827737</td>
<td>0.831299</td>
<td>0.831758</td>
</tr>
<tr>
<td>-0.22</td>
<td>0.830347</td>
<td>0.826813</td>
<td>0.838098</td>
<td>0.832796</td>
<td>0.838098</td>
<td>0.83878</td>
</tr>
<tr>
<td>-0.02</td>
<td>0.793439</td>
<td>0.794346</td>
<td>0.791449</td>
<td>0.79281</td>
<td>0.791449</td>
<td>0.791274</td>
</tr>
<tr>
<td>0.18</td>
<td>0.763772</td>
<td>0.769455</td>
<td>0.75131</td>
<td>0.759834</td>
<td>0.75131</td>
<td>0.750213</td>
</tr>
<tr>
<td>0.38</td>
<td>0.783522</td>
<td>0.786341</td>
<td>0.777339</td>
<td>0.781568</td>
<td>0.777339</td>
<td>0.776795</td>
</tr>
<tr>
<td>0.58</td>
<td>0.829983</td>
<td>0.824551</td>
<td>0.841897</td>
<td>0.833748</td>
<td>0.841897</td>
<td>0.842946</td>
</tr>
<tr>
<td>0.78</td>
<td>0.838244</td>
<td>0.83103</td>
<td>0.854064</td>
<td>0.843243</td>
<td>0.854064</td>
<td>0.855456</td>
</tr>
<tr>
<td>0.98</td>
<td>0.791287</td>
<td>0.792985</td>
<td>0.787566</td>
<td>0.790111</td>
<td>0.787566</td>
<td>0.787238</td>
</tr>
</tbody>
</table>

4. Results evaluation and discussion

In order to comprehend this problem, the eminent features of the velocity, temperature, pressure rise, pressure gradient and stream lines pattern of the fluid are obtained using (Cu-water) nanofluid and hybrid (Cu-Al$_2$O$_3$/water) nanofluid in a non-uniform tube. Initially, the nanoparticle of Cu (φ_1) is added to the base fluid and subsequently Al$_2$O$_3$ (φ_2) is added. Parametric study has been made for the graphical results which shows precise solutions and are shown as under:

Figs. (3-6) depict the trend of velocity distribution for solid volume fraction of (Cu- Al$_2$O$_3$)/water and Cu/Water. Substantially, the nanoparticles dissipate energy in the form of heat. At once the velocity for both nanofluid and hybrid nanofluid is improved with addition of more nanoparticles. Fig.3 portray the effects of slip parameter on hybrid nanofluid and nanofluid. It shows that velocity has decreasing behavior for large values of velocity slip parameter. Same effect of thermal slip parameter on velocity profile is witnessed in Fig. 4. The results reveals that Cu-water/nanofluid is
slower than the hybrid nanofluid for large values of slip parameters. Figs. (3-4) shows that velocity of the hybrid/nanofluid is always higher than the Cu-water nanofluid whatever the values of the slip parameters are taken. It also describes that slip shows reduction in the velocity field. The same slip retards the fluid motion which ultimately exhibits a decrease in the fluid nanoparticles. Impacts of different shape of nanoparticles are plotted in Figs. (3-6) It is concluded from Fig. 5 that velocity decelerates when heat absorption parameter increases. Fig. 6. It is evidently accentuated that nanoparticles velocity has maximum increase with the shape of platelets. Figs. (3-6) illustrates that velocity is elevated while using hybrid nanofluid as compared to cu/water nanofluid.

Fig. 3: Velocity distribution for different values of \(L \) and \(z^* = 0.2, L=0.1, \lambda=0.1, \quad \gamma=0.1, G_r^* =0.2, M=2, Q = 0.01, t^{**} = 0.2, k^* = 0.3, m' = 3.7, B = 1.0, \phi_1 = 0.1, \phi_2 = 0.02 \) (Cu-\(Al_2O_3 \)/water Nanofluid),
\[\phi_1 = 0.1, \phi_2 = 0.0 \) (Cu/water Nanofluid).
Fig. 4: Velocity distribution for different values of γ and $L = 0.1$, $z^* = 0.2$, $\lambda = 0.1$, $G_r^* = 0.2$, $M = 2$, $Q = 0.01$, $t^* = 0.2$, $k^* = 0.1$, $m' = 3.7$, $B = 0.4$,

$\varphi_1 = 0.1$, $\varphi_2 = 0.02$ (Cu$-\text{Al}_2\text{O}_3$/water Nanofluid),

$\varphi_1 = 0.1$, $\varphi_2 = 0.0$ (Cu/water Nanofluid).

Fig. 5: Velocity distribution for different values of B and $L = 0.1$, $z^* = 0.2$, $\lambda = 0.1$, $G_r^* = 0.2$, $M = 2$, $Q = 0.01$, $t^* = 0.2$, $k^* = 0.1$, $m' = 3.7$, $\gamma = 0.1$,

$\varphi_1 = 0.1$, $\varphi_2 = 0.02$ (Cu$-\text{Al}_2\text{O}_3$/water Nanofluid),

$\varphi_1 = 0.1$, $\varphi_2 = 0.0$ (Cu/water Nanofluid).
\(\varphi_1 = 0.1, \varphi_2 = 0.0 \) (Cu/water Nanofluid).

Fig. 6: Velocity distribution for different shapes \((m') \) and \(L = 0.1, \ z^* = 0.2, \ \lambda = 0.1, \ G_r^* = 0.2, \ M = 2, \ Q = 0.01, \ t^{**} = 0.2, \ k^* = 0.1, \ B = 1.0, \ \gamma = 0.1, \)
\(\varphi_1 = 0.1, \varphi_2 = 0.02 \) (Cu – Al\(_2\)O\(_3\)/water Nanofluid),
\(\varphi_1 = 0.1, \varphi_2 = 0.0 \) (Cu/water Nanofluid).

Figs. (7-8) show the influence of heat absorption and slip effects on temperature profile. It is clearly observed that increasing values of heat absorption significantly increases temperature and shows elevation for hybrid nanofluid. Fig. 8 depicts that temperature profile has increasing behavior for large values of slip parameter and it shows that Cu-water nanofluid causes high temperature as compared to hybrid nanofluid.
Fig. 7: Temperature distribution for different values of B and $z^* = 0.2, \lambda = 0.2, G_r^* = 0.2, M = 2, Q = 0.01, t^* = 0.2, k^* = 1.2, \gamma = 0.2, \varphi_1 = 0.1, \varphi_2 = 0.06 (Cu_2O_3/water Nanofluid), \varphi_1 = 0.1, \varphi_2 = 0.0 (Cu/water Nanofluid).

Fig. 8: Temperature distribution for different values of γ and $z^* = 0.2, \lambda = 0.2, G_r^* = 0.2, M = 2, Q = 0.01, t^* = 0.2, k^* = 1.2, \gamma = 0.2, B = 2.0, \varphi_1 = 0.1, \varphi_2 = 0.06 (Cu_2O_3/water Nanofluid), \varphi_1 = 0.1, \varphi_2 = 0.0 (Cu/water Nanofluid).
Pressure rise per wavelength is related to the effects of parameters in three different regions. The behavior is drawn in Figs. (9-12). Fig. 9 depicts that pressure rise per wavelength augments (Cu-water) nanofluid as compared to hybrid nanofluid. It is observed that buoyancy forces are more dominant in retrograde and reciprocal in peristaltic pumping region. Effects of velocity slip parameter are portrayed in Fig. 10. It is observed that higher velocity slip shows increasing behavior on pressure rise per wavelength. Same behavior of pressure rise per wavelength is witnessed Fig. 11 for thermal slip parameter. Hybrid nanofluid shows higher effects rather than Copper water nanofluid. Fig. 12 depicts different nanoparticle shape effects and plot shows that platelets shape nanoparticles show increasing behavior as compared to cylinder and bricks shape nanoparticles. It is also analyzed that hybrid nanofluid shows maximum influence than Cu-water nanofluid.

Fig. 9: Pressure rise for different values of G_r and $L = 0.1$, $z^* = 0.2$, $\lambda = 0.01$, $M = 1.5$, $Q = 0.01$, $t^{**} = 0.1$, $k^* = 0.3$, $B = 0.2$, $\gamma = 0.2$, $m' = 3.7$, $\varphi_1 = 0.1$, $\varphi_2 = 0.04$ (Cu-Al$_2$O$_3$/water Nanofluid).
\(\varphi_1 = 0.1, \varphi_2 = 0.0 \) (Cu/water Nanofluid).

Fig. 10: Pressure rise for different values of \(L \) and \(z^* = 0.2 \), \(\lambda = 0.01 \), \(M = 1.5 \), \(Q = 0.01 \), \(t^{**} = 0.1 \), \(k^* = 0.3 \), \(B = 0.2 \), \(\gamma = 0.2 \), \(G_r^* = 0.4 \), \(\beta = 3.7 \),
\(\varphi_1 = 0.1, \varphi_2 = 0.05 \) (Cu-Al\(_2\)O\(_3\)/water Nanofluid),
\(\varphi_1 = 0.1, \varphi_2 = 0.0 \) (Cu/water Nanofluid).

Fig. 11: Pressure rise for different values of \(\gamma \) and \(L = 0.1 \), \(z^* = 0.2 \), \(\lambda = 0.01 \), \(M = 1.5 \), \(Q = 0.01 \),
\(t^{**} = 0.1, k^* = 0.3, B = 0.2, \gamma = 0.2, G_r^* = 0.4, \beta = 3.7 \)
\(\varphi_1 = 0.1, \varphi_2 = 0.05 \) (Cu-Al\(_2\)O\(_3\)/water Nanofluid),
\[\varphi_1 = 0.1, \varphi_2 = 0.0 \ (Cu/water \ Nanofluid) \].

Figs. (12-17) demonstrate the consequences of variations of slip parameters, Magnetic field, heat absorption parameter and different shape effects. Impacts of slip parameters plotted in Figs. (13-17). Fig. 13 shows that longitudinal pressure gradient is maximum for larger values of velocity slip parameter and it also depicts that copper water nanofluid has higher increase as compare to hybrid nanofluid. Fig. 14 illustrates that higher values of thermal slip parameter yields enhancement in pressure gradient and hybrid nanofluid has higher impact than Cu-water nanofluid. It is observed from Fig. 15 that the pressure gradient increases for larger values of magnetic field. Meanwhile, electromagnetic forces are useful for increasing pressure gradient and it goes higher for Cu-water nanofluid near the upper wall. Fig. 16 portrays the effects of heat absorption parameter and shows that pressure gradient decreases by increasing heat absorption parameter and Cu-water nanofluid has larger impact as compare to hybrid nanofluid. Different nanoparticle shape
effects are displayed in Fig. 17 and it represents that platelets shape nanoparticles of hybrid nanofluid has more significant effect on pressure gradient as compare to cylinder and bricks shape nanoparticles of Cu-water nanofluid. Finally, the heat transfer phenomenon is discussed in Fig. 18 and confirms that Cu-water nanofluid has larger impact for increasing values of heat absorption than hybrid nanofluid.

Fig. 13: Pressure gradient for different values of L and $z^*=0.2$, $\lambda=0.01$, $M=1.5$, $t^{**}=0.1$, $k^{*}=1.2$, $B=0.2$, $\gamma=0.2$, $G_{\gamma}^{*}=0.4$, $m'=3.7$,

$\varphi_1 = 0.1$, $\varphi_2 = 0.05$ (Cu-Al$_2$O$_3$/water Nanofluid),

$\varphi_1 = 0.1$, $\varphi_2 = 0.0$ (Cu/water Nanofluid).
Fig. 14: Pressure gradient for different values of γ and $L = 0.1$, $z^* = 0.2$, $\lambda = 0.01$, $M = 2.0$, $t^* = 0.1$, $k^* = 1.2$, $B = 0.2$, $\gamma = 0.2$, $G_r^* = 0.1$, $m' = 3.7$, $\varphi_1 = 0.1$, $\varphi_2 = 0.02$ ($Cu-Al_2O_3/water$ $Nanofluid$), $\varphi_1 = 0.1$, $\varphi_2 = 0.0$ ($Cu/water$ $Nanofluid$).

Fig. 15: Pressure gradient for different values of M and $L = 0.1$, $z^* = 0.2$, $\lambda = 0.01$, $t^* = 0.1$, $k^* = 1.2$, $B = 0.2$, $\gamma = 0.2$, $G_r^* = 0.2$, $m' = 3.7$, $\varphi_1 = 0.1$, $\varphi_2 = 0.05$ ($Cu-Al_2O_3/water$ $Nanofluid$), $\varphi_1 = 0.1$, $\varphi_2 = 0.0$ ($Cu/water$ $Nanofluid$).
Fig. 16: Pressure gradient for different values of B and $L = 0.1$, $z^* = 0.2$, $\lambda = 0.01$, $M = 2.0$, τ^* = 0.1, $k^* = 1.2$, $\gamma = 0.1$, $\gamma = 0.2$, $G_r^* = 0.2$, $m' = 3.7$,

$\varphi_1 = 0.1$, $\varphi_2 = 0.04$ ($Cu - Al_2O_3/water$ Nanofluid),

$\varphi_1 = 0.1$, $\varphi_2 = 0.0$ ($Cu/water$ Nanofluid).

Fig. 17: Pressure gradient for different shapes (m') and $L = 0.1$, $z^* = 0.2$, $\lambda = 0.01$, $M = 2.0$, τ^* = 0.1, $k^* = 1.2$, $\gamma = 0.1$, $\gamma = 0.2$, $G_r^* = 0.2$, $B = 0.1$,

$\varphi_1 = 0.1$, $\varphi_2 = 0.02$ ($Cu - Al_2O_3/water$ Nanofluid),

$\varphi_1 = 0.1$, $\varphi_2 = 0.0$ ($Cu/water$ Nanofluid).
Fig. 18: Heat transfer for different values of B and $z^* = 0.2$, $\lambda^* = 0.2$, $t^* = 0.2$, $k^* = 1.2$, $\gamma = 0.1$, $\gamma = 0.2$, $m' = 3.7$,

$\varphi_1 = 0.1$, $\varphi_2 = 0.06 (Cu - Al_2O_3/water Nanofluid)$,

$\varphi_1 = 0.1$, $\varphi_2 = 0.0 (Cu/water Nanofluid)$.

Trapping

Trapping signifies an attention-grabbing phenomenon for the flow of fluid in a divergent tube. Contour, under certain conditions, describe to trap a bolus that moves as a whole with the average speed on the section of the tube. The formation of an internal bolus of the fluid by a stream line is always closed. The bolus is defined as a volume of the fluid delimited by a closed contour in a tube.

Figs. (19-22) are plotted to show the flow Pattern of Cu-water and (Cu- Al$_2$O$_3$)/ water in a tube for thermal slip parameter. It can be observed that more bolus appears for Cu-water nanofluid as compare to (Cu- Al$_2$O$_3$)/water. Figs. (23-26) describes the impact of non-uniform parameter for Cu-water and (Cu- Al$_2$O$_3$)/water in a tube. It is evident that the quantity of the bolus increases for large values of non-uniform parameter and shows the same behavior for Cu-water and (Cu- Al$_2$O$_3$)/water fluid. It is also extracted in Figs. Figs. (27-30) that the size of the bolus enlarges for
large value velocity slip parameter and has same behavior for Cu-water and hybrid nanofluid. Figs. (31-33) describes the influence of nanoparticle shape parameter on the trapping pattern. These panels show that the number of the bolus reduces for bricks and cylinder shapes particles, however, the size of the trapped bolus enlarges for platelets shapes of nanoparticles.

Figs. (19-20) Configuration of Cu-water through a tube for (i) γ (thermal slip parameter) = 2, 4 (ii) $\varphi_1 = 0.1, \varphi_2 = 0.0$

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Figs. (19-20) Configuration of Cu-water through a tube for
(i) γ (thermal slip parameter) = 2, 4 (ii) $\varphi_1 = 0.1, \varphi_2 = 0.0$
(21-22) Configuration of Cu- Al$_2$O$_3$/water through a tube for

(i) γ (thermal slip parameter) = 2, 4 (ii) $\varphi_1 = 0.1$, $\varphi_2 = 0.05$

Figs. (23-24), Configuration of Cu-water through a tube for

(i) k^* (non-uniform parameter) = 0.01, 0.03 (ii) $\varphi_1 = 0.1$, $\varphi_2 = 0.0$

Figs. (25-26), Configuration of Cu- Al$_2$O$_3$/water through a tube for

(i) k^* (non-uniform parameter) = 0.01, 0.03 (ii) $\varphi_1 = 0.1$, $\varphi_2 = 0.06$

https://mc06.manuscriptcentral.com/cjp-pubs
Figs. (27-28), Configuration of Cu-water through a tube for

(i) \(L \) (Velocity slip parameter) = 1.2, 1.4 (ii) \(\varphi_1 = 0.1, \varphi_2 = 0.0 \)

Figs. (29-30), Configuration of Cu- \(\text{Al}_2\text{O}_3 \)/water through a tube for

(i) \(L \) (Velocity slip parameter) = 1.2, 1.4 (ii) \(\varphi_1 = 0.1, \varphi_2 = 0.04 \)
Figs. (31-33), Configuration of Cu- Al₂O₃/water through a tube for Different shape effects (i) Bricks (ii) cylinder (iii) Platelets (iv) \(\varphi_1 = 0.1, \varphi_2 = 0.05 \)

5. Conclusions

Aforementioned research focusses on the nanoparticles shape, slip effects and heat transfer on steady physiological delivery of MHD hybrid nanofluid with peristaltic motion in a tube. Limited study is carried out on the research regarding phenomenon for hybrid nanofluids till now. The exact solutions of the emerging problem are obtained by plotting graphs against theoretical study. The relevant results can be concluded as

- Velocity profile reveals that Cu-water/nanofluid is slower than the hybrid nanofluid for large values of slip parameters.
- In a temperature distribution, heat absorption parameter are more substantial as fluid flow speeds up when large values are chosen.
- Effects of Grashof number pictured that pressure rise per wavelength enhances for cu-water nanofluid as compared to hybrid nanofluid. Results also show that buoyancy forces are more dominant in retrograde and elevated peristaltic pumping region.
- Effects of shape of the different nanoparticle on pressure rise per wavelength shows that bricks shape nanoparticles have more decreasing behavior as compared to cylinder and platelets shape nanoparticles.

- Large values of thermal slip parameter enhance pressure gradient and cu-water nanofluid has higher impact than hybrid nanofluid.

- Platelets shape nanoparticles of hybrid nanofluid has more significant effect on pressure gradient as compare to cylinder and bricks shape nanoparticles of Cu-water nanofluid.

- The size of trapped bolus enlarges for bricks shapes nanoparticles while decreases for platelets and cylinder shapes nanoparticles.
References

[45] TN. Ahmed, I. Khan, Mixed convection flow of sodium alginate (SA-NaAlg) based molybdenum disulphide (MoS2) nanofluids: Maxwell Garnetts and Brinkman models, Results in Physics, 8 (2018), 752-757.

[46] I. Tlili, WA. Khan, I. Khan, Multiple slips effects on MHD SA-Al2O3 and SA-Cu non-Newtonian nanofluids flow over a stretching cylinder in porous medium with radiation and chemical reaction, Results in Physics, 8 (2018), 213-222.

