Evidence for temperature-dependent shifts in spawning times of anadromous alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis)

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Fisheries and Aquatic Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>cjfas-2019-0140.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>21-Oct-2019</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Lombardo, Steven; Florida Atlantic University, Harbor Branch Oceanographic Institute; North Carolina State University, Department of Applied Ecology Buckel, Jeffrey; North Carolina State University, Department of Applied Ecology Hain, Ernie; North Carolina State University, Center for Integrated Pest Management Griffith, Emily; North Carolina State University, Department of Statistics White, Holly; North Carolina Division of Marine Fisheries</td>
</tr>
<tr>
<td>Keyword:</td>
<td>PHENOLOGY, ANADROMOUS SPECIES < Organisms, SPAWNING < General, CLIMATE CHANGE < General, TEMPERATURE EFFECTS < General</td>
</tr>
<tr>
<td>Is the invited manuscript for consideration in a Special Issue?:</td>
<td>Not applicable (regular submission)</td>
</tr>
</tbody>
</table>

https://mc06.manuscriptcentral.com/cjfas-pubs
Evidence for temperature-dependent shifts in spawning times of anadromous alewife

(Alosa pseudoharengus) and blueback herring (Alosa aestivalis)

Steven M. Lombardo*. Center for Marine Sciences and Technology, Department of Applied Ecology, North Carolina State University, 303 College Circle, Morehead City, NC 28557, USA.
smlombar@ncsu.edu

Jeffrey A. Buckel. Center for Marine Sciences and Technology, Department of Applied Ecology, North Carolina State University, 303 College Circle, Morehead City, NC 28557, USA.
jabuckel@ncsu.edu

Ernie F. Hain. Center for Integrated Pest Management, North Carolina State University, 1730 Varsity Drive, STE 110, NCSU Centennial Campus, Raleigh, NC 27606, USA.
ernie_hain@ncsu.edu

Emily H. Griffith. Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27695, USA. eghohmei@ncsu.edu

Holly White. North Carolina Division of Marine Fisheries, Elizabeth City Field Office, 105A Impact Boulevard, Elizabeth City, NC 27909, USA. holly.white@ncdenr.gov

Corresponding author: Steven M. Lombardo (e-mail: slombardo2018@fau.edu)

*Present Address: Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, USA.
Abstract We analyzed four decades of presence/absence data from a fishery-independent survey to characterize the long-term phenology of river herring (alewife *Alosa pseudoharengus* and blueback herring *Alosa aestivalis*) spawning migrations in their southern distribution. We used logistic generalized additive models to characterize the average ingress, peak, and egress timing of spawning. In the 2010s, alewife arrived to spawning habitat 16 days earlier and egressed 27 days earlier (peak 12 days earlier) relative to the 1970s. Blueback herring arrived five days earlier and egressed 23 days earlier (peak 13 days earlier) in the 2010s relative to the 1980s. The changes in ingress and egress timing have shortened the occurrence in spawning systems by 11 days for alewife over four decades and 18 days for blueback herring over three decades. We found that the rate of vernal warming was faster during 2001 to 2016 relative to 1973 to 1988 period and is the most parsimonious explanation for changes in spawning phenology. The influence of a shortened spawning season on river herring population dynamics warrants further investigation.
Introduction

Globally, average temperatures have increased steadily from 1880 to 2012, with the three most recent decades having been successively warmer than any preceding decade since 1850 (IPCC 2014). A meta-analysis by Chen et al. (2011) linked range shifts and warming climate for 23 terrestrial species groups to higher latitudinal distributions and higher elevations. Poleward shifts in distribution have also been observed in marine species across taxa (Murawski 1993; Blanchard et al. 2005; Perry et al. 2005; Mieszkowska et al. 2006; Fogarty et al. 2008; Nye et al. 2009). Marine species whose life histories are solely dependent upon marine or estuarine environments are often capable of modifying their spatial distributions to stay within optimal thermal ranges for their various life stages (Perry et al. 2005; Poloczanska et al. 2013). However, diadromous species that exhibit some degree of natal homing may not be able to spatially adapt to environmental changes and are at greater risk of experiencing negative effects due to climate change (Hare et al. 2016), but could temporally adapt their behavior to maintain accessibility to preferred temperatures in response to changes in thermal regime.

Phenology is the study of seasonal or cyclical biological processes and how they are influenced by climate, environment, and species interactions. Plants and animals alike rely upon external stimuli to optimize the timing of migrations, blooms, molts, and reproduction (Newton 1966; White et al. 1997; Sherry et al. 2006; Miller-Rushing et al. 2008). Climate change has disrupted the natural timing of such biological processes for many species through intensified rates of warming, prolonged seasons of precipitation or drought, amplification of weather events, and cascading effects through trophic interactions (Cushing 1990; Zhang et al. 2005; Ciannelli et al. 2007; Prieto et al. 2008; Richardson et al. 2013; Asch 2015). For diadromous fishes, changes in thermal regime have already been shown to impact the phenology of spawning migrations.
River herring, the collective name for alewife (*Alosa pseudoharengus*) and blueback herring (*Alosa aestivalis*), are anadromous fishes that are at historically low levels of abundance (Hightower et al. 1996; ASMFC 2012, ASMFC 2017). River herring once supported large fisheries along the North American Atlantic coast from Nova Scotia down to the St. Johns River, FL (Jackson 1944; Watts 2003; Hightower 2004). Declines in river herring stocks have been attributed to overfishing (Hightower et al. 1996), offshore bycatch (ASMFC 2012; Bethoney et al. 2013; Cournane et al. 2013), and loss of spawning habitat due to obstructions and degradation (Collier and Odom 1989; Hall et al. 2011). Attempts to ameliorate the population decline include moratoria, offshore by-catch caps, offshore spatial/temporal closures in the Atlantic herring (*Clupea harengus*) and mackerel (*Scomber scombrus*) fisheries, and dam removal, all of which have been ineffective at recovering stocks (Hightower et al. 2004; ASMFC 2012; Bethoney et al. 2013; Cournane et al. 2013).

While the decline of river herring was likely caused by a combination of fishing pressures and habitat loss, the continued depression of population levels may result from other ecological mechanisms, including climatological phenomenon. For example, Lynch et al. (2015) provide evidence that river herring are vulnerable to ocean warming off the northeast US shelf, reducing the amount of suitable habitat, and that the population may be more sensitive to climate effects at low levels of abundance. Furthermore, a vulnerability assessment of 82 Northeast Atlantic marine fish and invertebrate species by Hare et al. (2016) identified both alewife and blueback herring as species of the highest concern for negative effects of climate change, citing water temperature and the limited periodicity and spatial constraints of their anadromous spawning
strategy as the most critical environmental and biological factors. A tagging study by Jessop (1994) in the Saint John’s river system shows that river herring exhibit high inter-annual spawning site fidelity (63-97% return rate), a process likely driven by olfactory natal homing (Thunberg 1971). In freshwater systems utilized by river herring as spawning and nursery habitat, river flow conditions and water temperature are the dominant influencers of stock recruitment (Tommasi et al. 2015). Early studies in New England at fish weirs and dams have shown the timing and behavior of pre- and post-spawning migration river herring to be tightly coupled with stream temperatures and insolation (Collins 1952; Saily et al. 1972; Beltz 1975).

Ellis and Vokoun (2009) provided the first suggestion that alewife spawning migrations may be occurring earlier due to higher water temperatures in recent time periods. However, they did not have historical and modern fish count data in the same watershed. Both Lynch et al. (2016) and Tommasi et al. (2015) suggest further examination of the climatological effects on river herring in freshwater systems, and specifically on adult spawning migrations. Despite colloquial and managerial grouping of alewife and blueback herring, the two sympatric species display different behaviors with alewife spawning migrations happening earlier than blueback herring. Whether migrating blueback herring display the same response to climatological changes as alewife, as suggested by Ellis and Vokoun (2009), has yet to be examined.

Here, we test the hypothesis that the phenology of adult alewife and blueback herring has independently changed by examining river herring catch data during the spawning migration from 1973 to 2016 in the Albemarle Sound watershed (hereafter referred to as ASW). After describing the temporal variation in spawning migrations, we also evaluate potential mechanisms responsible for the changes including: age structure, abundance, and water temperature. Our work aims to further characterize the response of river herring to shifting climate norms in their...
southern distribution and to provide life history information to better inform management
decisions as the environment continues to change.

Methods Study Location and Monitoring The North Carolina Division of Marine Fisheries
(NCDMF) has conducted a river herring spawning habitat survey since spring of 1973. The goal
of the survey is to identify the annual extent of stream habitats used by both alewife and
blueback herring for spawning in nine river systems and their associated tributaries that feed into
the AS. Sampling for river herring was intermittent in years between 1973 and 2001 but has
been annual since 2007 (See Table S1 for sampling summary; Fig 1 for sampling stations).
Although only 24 of the possible 43 years were sampled, sampling occurred in at least four years
per decade in all decades with the exception of the 1990s (only one year of sampling). Prior to
2007, sampling was conducted at randomly selected stations throughout the ASW with varied
spatial and temporal extents (See Fig S1). Beginning with 2008, the methods were standardized
to sample the entirety of the river herring spawning run within the Chowan River and Edenton
Bay watershed plus at least one of twelve additional ASW river systems on a rotating basis.
Additional systems were sampled if travel time to and from sampling stations was not limiting.
In 2007, the sampling design changed from random sampling to sampling that tracked the
migration progress of river herring through the watershed. Beginning in 2012, sample stations
located at the nearest road crossing to the mouths of five Chowan River tributaries became fixed
sampling stations that are sampled each week throughout the entire river herring spawning
season.

The presence of river herring was monitored with staked or floating gillnets. Gillnet
dimensions have varied over the time series with bar meshes ranging from 1.13 to 1.88 in. and
lengths ranging from 3 to 30 yd. Since 2007, the protocol has been standardized, providing more
consistent use of bar mesh sizes of 1.38 in. during the alewife run and 1.25 in. during the blueback herring run. Net lengths were also restricted to 5, 8, and 10 yards for staked gillnets, 5, 8, 10, 20, and 30 yd for floating gillnets, fished at a maximum depth of 2.1 m where possible. Staked gillnets were stretched across the channel width on the effluent side of the furthest downstream bridge or culvert and moved upstream to the next road crossing when running ripe females were encountered. Navigable waterways were sampled with gillnet lengths that left watercraft passage uninterrupted. Gillnets were set on Mondays, checked every 24 hours, and removed over weekends and holidays due to logistical constraints. Water surface temperature, air temperature, pH, salinity, conductivity, and DO were taken at each sampling station upon net inspection.

Prior to 2007 sampling was random in start date, end date, and location, and mostly focused on monitoring the blueback herring spawning migration. Starting dates ranged from February 4 to April 2, with a median start date of March 8 (Fig S1). Sampling end dates ranged from April 21 to May 8, with a median end date of April 29. From 2007 onward, sampling for alewife commenced when alewife were caught in the NCDMF striped bass (*Morone saxatilis*) fisheries-independent gillnet survey, which is conducted within the ASW at the mouths of the river systems. Starting dates ranged from January 12 to February 29, with a median start date of February 6. The sampling protocol for 2007 onward began sampling at the most downstream stations and only moved to upstream locations after a running ripe alewife was caught, with the exception of the five fixed nets (2012 – present). Nets were reset to their original starting positions when the first blueback herring was caught in any of the alewife survey nets and then moved upstream again as running ripe blueback herring were caught. Sampling ceased when catches of blueback herring in the NCDMF Chowan River pound-net survey, conducted in the
main stem of the Chowan River, became sporadic (<10 fish per week). The end dates ranged from April 29 to May 30, with a median end date of May 9.

Phenology Studies on anadromous fish migrations characterize the phenology of the migration by identifying the initiation, peak, and completion (Quinn and Adams 1996; Juanes et al. 2004; Ellis and Vokoun 2009; Kennedy and Crozier 2010). Migration progress is typically delineated by identifying the day of the year that 25%, 50%, and 75% of yearly abundance is observed as reference points for the initiation, peak, and completion of the migration (Antonsson and Gudjonsson 2002; Kennedy and Crozier 2010; Otero et al. 2014). However, 5% of the run abundance has been used to identify the initiation of alewife spawning migrations in New England (Ellis and Vokoun 2009) and the Chesapeake Bay (Ogburn et al. 2017). Due to the variability in gill net sizes and amount of stream width covered by gill nets at sampling locations across years, presence/absence data were used instead of abundance data to characterize the phenology of river herring spawning.

We used generalized additive models (GAMs) with a logit link and a binomial distribution to examine the effects of several variables on river herring presence and absence data. GAMs are useful in modeling nonparametric relationships typical of ecological data (Hastie and Tibshirani 1990) and have been shown to be a more accurate representation of phenology than first appearance dates or alternative measures (Moussus et al. 2010). Penalized thin plate and tensor product splines with shrinkage parameters were used as smoothers. The inclusion of shrinkage parameters allows for completely smoothed predictors to be selected out of the model by reducing the splined term to zero (Wood 2006). Environmental (surface temperature, DO, pH, conductivity, upstream distance) and temporal (ordinal day and decade) variables were screened for correlation and brought into the models *a priori* based upon
knowledge of the environmental cues that river herring use to initiate migratory behavior and
inspection of plots of river herring presence probability and potential variables. Because of
correlation with ordinal day, we dropped water quality parameters and retained ordinal day.

Due to the sampling procedures and efforts varying across the 43-year time series, some
special considerations needed to be made when constructing and making inferences from the
models. Upon inspection of the data, we determined that sampling was too sparse to model the
phenological trends at a yearly resolution. Modeling at a broader scale, using decade, allowed
for a wider range of days for the model to be fitted to and more precise measures of fish presence
within the system. It is important to note that similar changes in phenology (described below)
were observed when using year instead of decade. Decadal differences in the first and last dates
of sampling resulted in GAM predictions occurring outside of the dates where sampling
occurred. Extrapolation is not recommended without ecological justification and results should
be evaluated critically (Merow et al. 2014). Thuiller et al. (2004) showed that extrapolating from
a restricted range of data (i.e., not capturing leading and trailing absences) can result in
disruption of smoothed relationships and more conservative or liberal predictions depending on
the information available to inform the model. Due to river herring being anadromous, temporal
extrapolation trending towards egress from the system (5% presence probability) can be
ecologically and statistically justified as long as predictions are not extrapolated beyond the
temporal bounds of sampling for the entire time-series (i.e., the first and last ordinal days
sampled). For instances where predictions are extrapolated, a second estimate of ingress can be
made as the first detection of presence and egress as the last detection of presence. These latter
estimates based on observations are biased late for ingress and biased earlier for egress given that
sampling during these periods was limited.
Additionally, the changes in experimental design in 2007 could lead to changes in spatial coverage of the survey in recent years. Because the presence of river herring can change with distance upstream, we accounted for variability in the distance upstream that samples were taken. Distances from the mouth of the river systems to the sample stations were measured using ArcMap 10.3.1 (ESRI, Redlands, CA) and the USGS National Hydrography Dataset (NHD) (U.S. Geological Survey 2013). Upstream distances ranged from 101 to 188,478 meters. Spatial variation was accounted for by creating a proportion; the distance between the tributary mouth and each sample station to the maximum distance a river herring was observed in the tributary (hereafter referred to as distance proportion).

Although we used distance proportion as a variable to correct for any changes in sampling design over the decades, the variability in sampling locations during the spawning run (i.e., from changing sampling protocol in 2007) was a source of uncertainty in modelling phenology with the complete dataset. The trends in presence at a subset of sample stations that were less impacted by spatial variability in sampling was examined to ensure our results using all data were not biased by changes in sampling protocol. Criteria for the subset selection was that sampling should span the spawning migrations of both alewife and blueback herring as best as possible, and that at least 10 unique days were sampled. In order to obtain sufficient sampling resolution decades were binned into an “early” set (1970s and 1980s) and a “late” set (2000s and 2010s). The reduction in degrees of freedom caused by binning decades prevented the creation of spline fitted models similar to those created with the full dataset. The criteria used resulted in a subset of 36 sample stations.

and 2010s (2010 to 2016) were modeled separately for alewife and blueback herring. The variables included in the models were distance proportion, ordinal day, decade, and the ordinal day and decade interaction.

Final variable selection and model fitting using restricted maximum likelihood (REML) was done within the R package MGCV (Wood 2011). Models were constructed with variables having associated smoothers, no smoothers (linear predictor), and tensor product interaction smooths with the interaction and main effects. Interactions were constructed with tensor product interaction smooths which are more stable and interpretable than using full tensor product smooths that remove the main effects (Wood 2017). The basis dimensions (k), which control the number of basis functions and sets the maximum degrees of freedom for smooth terms in the model, were evaluated using the gam.check() function from the R package MGCV. The basis dimensions were adjusted to balance computational efficiency and reduce overfitting. Akaike’s Information Criterion (AIC) was used to select the model with the best fit and fewest degrees of freedom (Burnham and Anderson 2002). Percent deviance explained was calculated by subtracting the model deviance from the null deviance then dividing by the null deviance and multiplying the result by one-hundred (Stoner et al. 2001).

Model prediction success was evaluated using receiver operating characteristics (ROC) plots generated in the R packages ROCR and pROC (Sing et al. 2005; Robin et al. 2011). The ROC uses a series of misclassification matrices computed for a range of presence probability cut-offs from 0 to 1, then plots the true positive fraction against the false positive fraction (Fielding and Bell 1997; Pearce and Ferrier 2000; Brotons et al. 2004). The area under the curve (AUC) is a measure of model performance, where an AUC = 0.5 yields the same predictive capacity as
chance and increases above 0.5 represent increases in predictive capacity (Hosmer and Lemeshow 2000; Mandrekar 2010).

Model predictions were used to estimate three spawning migration reference points. These were: (1) ingress at 5% presence probability, (2) peak presence probability, and (3) egress at 5% presence probability. Where no single, clearly defined peak existed (i.e. a plateau or bimodal curve), the mean day along the plateau or between the peaks was designated as the peak (i.e., central measure) spawning day for that decade. There were instances where the beginning or end of the spawning migration was not sampled and predictions from the model would have to be extrapolated >1 d to reach 5% presence probabilities; in these cases, estimates of ingress and egress were made using the first and last date of observed detections. Confidence intervals were established for ingress, peak (unimodal), and egress using the presence probability CIs for the preceding and following ordinal days.

Drivers of Phenology Changes Temperature can be a particularly strong driver in movement of anadromous fishes (Antonsson and Gudjonsson 2002; Ellis and Vokoun 2009; Kennedy and Crozier 2010). We used associated water temperature data to determine temperatures that triggered migrations and if those were consistent across decades. The 36 station subset used to evaluate the phenology models was also used in a two-way ANOVA to examine the effect of the interaction between ordinal day and time period on temperature. The annual data were binned into early- (1970s – 1980s) and late-decades (2000s – 2010s) to provide sufficient data for regression. Water temperature data in the early decades were sparse, particularly in the early spring, relative to later decades; thus, we limited our temperature and migration analysis to egress only for alewife. We estimated the water temperature on the days when ingress (blueback herring only) and egress occurred in the early-decades (alewife: 1970s; blueback herring: 1980s).
using the early-decades temperature fit. We then estimated the ordinal day when that
temperature occurred in the late-decades temperature fit and compared it to the ingress and
egress days predicted by the later-decade phenology models. To ensure our results were not
biased by non-overlapping periods, we also ran the regression only using data from the same
ordinal day range.

Although we detected decadal shifts in ingress and egress timing (see Results below), we
were interested in whether we could link annual variability in river herring migrations to annual
variability in mean water temperature or rate of temperature change. This analysis was limited to
2008 to 2016 because of limitations with water temperature data for earlier years. Furthermore,
estimates of ingress for alewife were not possible for all of these years so we limited our analysis
to egress timing only for blueback herring and alewife. A subset of Chowan River and Edenton
Bay catch data from 2008 – 2016 were used to create both alewife and blueback herring GAM
models with the same structure and interpretation of egress as the full dataset phenology models.
Rates of water temperature change for each year between 2008 and 2016 were estimated by
creating linear regression models over the range of days that egress was predicted for 2008 –
2016. Mean water temperature for each year from 2008 to 2016 was calculated as the mean
water temperature over the range of days that egress was predicted for each species (Alewife:
April 4 – April 18, and blueback herring: April 15 – April 30; See Results below). Correlation
between days of egress and the two water temperature metrics was assessed by Pearson’s r.

Comparison of Presence/Absence with Abundance Data We used presence/absence data at
multiple stations to examine for changes in phenology while others have used percent-of-run
abundance percentiles at stationary locations (see Antonsson & Gudjonsson 2002; Ellis &
Vokoun 2009). We tested whether presence/absence data are a good proxy for abundance by
comparing the ASW 2010s decade phenology metrics with phenology metrics calculated using 2016 river herring spawning run abundance data from the nearby (~140 km to the North) Chickahominy River, Virginia. The Virginia Institute of Marine Science (VIMS) operates a fishery-independent alosine monitoring program for this river (Hilton et al. 2017). We compared ingress (ingress 5% presence probability vs 5% run abundance), peak (peak presence probability vs 50% run abundance), and egress (egress 5% presence probability vs 95% run abundance).

Results Over the 43-year time period (1973 – 2016), there were 12,839 sampling events made at 325 sample stations (see Fig 1 for stations). A total of 8,970 alewife were caught (40.4% female, 58.1% male) in 2,241 net sets (17.5% catch rate) and 8,609 blueback herring were caught (51.2% female, 47.8% male) in 1,295 net sets (10.1% catch rate).

Alewife Phenology AIC selection strongly favored the full model, which included distance proportion, day, decade, and the interaction between day and decade (Table S2). The decadal change in timing on the spawning grounds is dramatic with a clear shift in ingress, peak, and egress and a resulting shortening of time on spawning grounds (Table 1; Fig 2a). The changes are evident even with estimations based upon the first and last presences. In the 1970s, estimated alewife ingress (5% presence probability) was February 12, peaked at March 23, and completed their time on spawning ground by May 9 (egress estimate extrapolated one day). In the 2010s, these three dates were January 27, March 11, and April 12. The mean change in migration ingress and egress was -4 d per decade and -6.75 d per decade, with net-changes of -16 d and -27 d, respectively. The imbalanced shift in ingress and egress has reduced the time that the alewife population spent on the spawning grounds by 11 d. The date of peak catch probability occurred 12 d earlier over the four-decade time period.
The proportion of alewife presence detections at a subset of 36 sample stations that were consistently sampled in the early decades (1970s and 1980s) and late decades (2000s and 2010s) corroborate the modeled phenological changes (Fig 3a). During ingress time periods in the early decades (around day 43), presence proportions were much greater in the later decades. During the egress time periods in the early decades (around day 129), presence proportions were zero or near-zero in the later decades and substantially lower than the presence proportions in the early decades. Thus, changes in sampling design between the early and late decades does not explain the changes in phenology of alewife spawning.

Blueback Herring Phenology AIC selection strongly favored the full model, which included distance proportion, day, decade, and the interaction between day and decade (Table S2). Blueback herring showed the same phenological shifts as alewife, but with a smaller change in the date of ingress and a larger shift in egress (Table 1; Fig 2b). Decadal comparisons were not made with the 1970s because sampling or model extrapolation could not be done for the egress period. However, egress was captured by extrapolation in the 1980s, and decadal comparisons can be made for all 1980s migration metrics. In the 1980s, blueback herring arrived at March 20, peaked at April 18, and completed their spawning migration by May 18. In the 2010s, these three dates were March 15, April 5, and April 25. The mean change in migration ingress and egress was -1.67 d per decade and ~7.67 d per decade, respectively. The date of peak catch probability occurred 13 d earlier over the three-decade time period.

As with alewife, the proportion of blueback herring presence detections at the subset of 36 stations were examined and also corroborate the phenology model (Fig 3b). During ingress time periods in the early decades (around day 79), presence proportions were marginally greater in the later decades. During the egress time periods in the early decades (around day 138),
presence proportions were much lower or zero in the later decades compared to the higher and non-zero presence proportions in the early decades. Thus, changes in sampling design between the early and late decades do not explain the changes in phenology of blueback herring spawning.

Effects of vernal warming rate on phenological shifts Water temperatures recorded at the station subset for both the early decades (1973 – 1988) and the late decades (2001 – 2016) provide the best data coverage to describe late spring warming trends during the egress times of alewife and blueback herring. The rate of vernal warming during 2001 to 2016, 0.152 C*d⁻¹ (95% CI 0.119-0.191) was significantly higher than warming rate (0.077 C*d⁻¹, 0.060-0.095) during springs of 1973 – 1988 (ordinal day * time period; $F_{3,3665} = 65.23; p < 0.001$) (Fig 4). A second comparison of warming rate between the two time periods but limited to the same range of ordinal days maintains this trend ($F_{3,3140} = 72.92; p < 0.001$; Fig S2). The increased rate of warming results in higher predicted temperatures from day 88 (March 29, at 14.0 C) onward. Elevated temperatures, or faster warming, from March 29 onward may be responsible for expediting the egress of both alewife and blueback herring. The alewife phenology model predicted a 1970s egress date of May 9 (day 129). The egress associated water temperature estimated on this date for 1973 – 1988 was 17.2 C, which occurred on April 19 (day 109) in 2001 – 2016 (estimates from temperature vs ordinal day regressions). The alewife phenology model predicts a 2010s egress date of April 12 (day 102) that is only seven days earlier than the estimate based on temperature. The blueback herring phenology model predicted a 1980s egress date of May 18 (day 138). The egress associated water temperature estimated on this date for 1973 – 1988 was 17.9 C, which occurred on April 24 (day 114) in 2001 – 2016. The blueback herring phenology model predicts a 2010s egress date of April 25 (day 115) that is only one day
later than the estimation using egress temperature. The blueback herring phenology model predicted a 1980s ingress date of March 20 (day 79). The ingress associated water temperature estimated on this date in 1973 – 1988 was 13.3 °C, which occurred on March 24 (day 83) in 2001 – 2016. The blueback herring phenology model predicts a 2010s ingress date of March 15 (day 74). Although this represents a difference of 9 days, it is important to point out the similarities in dates for 13.3 °C water in the two time periods (March 20 for 1973 – 1988 and March 24 for 2001 – 2016) and the similarities in dates for ingress predictions (March 20 in the 1980s vs March 15 in the 2010s).

We examined the relationship between annual timing of river herring egress and annual water temperature metrics from 2008 to 2016. AIC model selection strongly favored the full model structure (Table S3). Within the Chowan River and Edenton Bay systems, alewife were predicted to egress between April 4 and April 18 (Table S4; Fig S3). Mean water temperatures over these days ranged from 13.8 °C to 17.9 °C and the rate of temperature change ranged from -0.32 to 0.52 °C·d⁻¹. The relationships between alewife egress date and both water temperature metrics were slightly negative (Fig S4), but neither correlation was significant (temperature: r = -0.09, df = 7, p = 0.82; rate: r = -0.04, df = 7, p = 0.92). Blueback herring were predicted to egress between April 15 and May 1. Mean water temperatures over these days ranged from 15.4 °C to 19.8 °C and the rate of temperature change ranged from -0.63 to 0.56 °C·d⁻¹. The relationships between blueback herring egress and both temperature metrics were also not significant (temperature: r = -0.46, df = 7, p = 0.22; rate: r = 0.27, df = 7, p = 0.48; Fig S4).

Thus, we did not find evidence of temperature metrics influencing egress dates for alewife and blueback herring during the 2008 to 2016 period.
Comparing presence/absence and abundance data for spawning phenology metrics For the most recent decade (2010), our presence probability derived phenology metrics for river herring in the ASW match closely with the percent-of-run abundance phenology metrics (5%, 50%, and 95%) calculated for the 2016 river herring spawning run in the Chickahominy River. For alewife in the Chickahominy River, percent-of-run abundance yields February 3, March 9, and April 6 as the dates of ingress, peak, and egress while our estimates are January 27, March 11, and April 12. The three percentiles for blueback herring in the Chickahominy River occur on March 16, March 31, and April 27 and our estimates are March 15, April 5, and April 25. Thus, our migration metric predictions using presence/absence data were within ± 7 days (average ± 3.5) of those using abundance data in a nearby system.

Discussion Changes in river herring spawn phenologies and potential causes We provide evidence that the spawning migrations of alewife and blueback herring have shifted to earlier dates in recent decades within the ASW, with substantial truncation of blueback herring spawning season length. Our results are consistent with trends observed in other anadromous populations: southern New England alewife (Ellis and Vokoun 2009), Atlantic salmon (*Salmo salar*) (Juanes et al. 2004), Pacific salmonids (*Oncorhynchus sp.*) (Kovach et al. 2015), and Chesapeake Bay striped bass (Peer and Miller 2014). Ellis and Vokoun (2009) found that changes in spring temperatures across ~4 decades was associated with alewife migrations that occurred ~12 days earlier. Peer and Miller (2014) observed earlier shifts in spring-spawning migration metrics (ingress, peak, and egress) of 800-899 mm female Chesapeake Bay striped bass. From 1991 to 2010, the striped bass arrived, peaked, and left 5, 6, and 14 days earlier. Shifts in the timing of anadromous spawning events can have cascading negative effects such as reduced population resiliency through decreases in phenotypic variation (Sgrò et al. 2011),
trophic mismatches that have substantial impacts on the survival of offspring (Cushing 1990; Durant et al. 2007; Fortier and Gagné 2011), nutrient influx (Walters et al. 2009), and especially food web dynamics in the case of forage fish (Yako et al. 2000). Management strategies, such as seasonal harvest closures, can also become less effective due to shifts in migration timing (Peer and Miller 2014).

Changes in the phenologies of migration and spawning across animal groups have been attributed to changes in age structure (Lambert 1987; Hutchings and Myers 1993; Trippel and Morgan 1994), changes in species abundance (Miller-Rushing et al. 2008), and shifts in environmental cues due to climate change (Quinn and Adams 1996; Ellis and Vokoun 2009). We examined the possibility for each of these for alewife and blueback herring in the ASW.

The relationship between the timing of spawning runs and age structure has not been addressed in the literature for river herring. Lambert (1987) detailed this relationship with another clupeid species, Atlantic herring, in both the Atlantic and Pacific stocks. Lambert (1987) concluded that larger, older fish arrived on the spawning grounds earlier than their smaller, younger conspecifics. It is reasonable to believe that the relationship between age-length and the timing of arrival upon the spawning grounds found in this confamilial apply to both alewife and blueback herring as well. The phenomenon has also been found in another anadromous species, striped bass (Peer and Miller 2014). Thus, any shift towards an older age structure should manifest itself in earlier spawning migration times. However, no change in alewife age structure was observed and blueback herring age structure trended towards a younger age structure in recent decades, which is opposite of the pattern that might explain earlier spawning (NCDMF unpublished data). Thus, we conclude that changes in age structure are not responsible for changes in river herring spawn times within the ASW.
Alewife and blueback herring population abundances in the ASW have decreased dramatically from the early 1970s to present and are currently at levels deemed to be overfished despite the absence of fishing pressures since 2007 (White et al. 2017). Thus, changes in abundance are one potential reason for changes in spawn timing. However, the relationship between population abundance and migration phenology has received very little study. Miller-Rushing et al. (2008) found that first arrival of several bird species in spring were related to population size since a larger population size would have a higher likelihood of detection. The earlier spawning in recent years is opposite of the pattern expected given decreased abundance levels. For anadromous fishes, there is potential for abundance levels to change the length of spawning time but we did not find studies that examined this effect. Because river herring abundance declined in the ASW as vernal warming rate increased (see below) we cannot disentangle these two variables. We recommend research on the effects of abundance on spawning phenology in anadromous fishes.

Water temperature has repeatedly been identified as having an influence on spawning and migration timing for many anadromous species: striped bass (Peer and Miller 2014), Atlantic salmon (Juanes et al. 2004), American shad (Alosa sapidissima) (Quinn and Adams 1996), lake sturgeon (Acipenser fulvescens) (Bruch and Binkowski 2002), as well as alewife (Ellis and Vokoun 2009). Temperatures within the coastal mid-Atlantic region of the United States have been increasing over the past century (Polsky et al. 2000), with particularly larger changes observed in lower order streams (Ding and Elmore 2015) such as those used by river herring as spawning habitat. Our results suggest that earlier vernal warming has led to an earlier spawning season for river herring in tributaries of the ASW. Our findings support the conclusions of Ellis and Vokoun (2009) for southern New England alewife. Their estimations of change in alewife
Ingress and peak migration were 13 and 12 days earlier, respectively, while our models predicted 16 and 12 days earlier. The strongest evidence for a temperature effect is that the temporal shift in egress dates predicted by the phenology models are similar to the changes in dates in which egress-associated temperatures (~17°C) are reached. The temperature-predicted and observed egress dates in more recent decades were earlier and similar in timing for alewife (7 d apart) and blueback herring (1 d apart).

The egress temperatures we estimated for alewife and blueback herring (~17°C) were similar to those observed in a river system ~300 km north. Ogburn et al. (2017) estimated the daily count of both upstream and downstream migrating alewife and blueback herring in the Choptank River, MD for the 2014 spawning season using a dual-frequency identification sonar (DIDSON). Strong pulses of downstream migration in April and May appear to coincide with water temperatures near 17°C. If the rate of vernal warming increases over time, water temperatures on river herring spawning grounds will reach 17°C sooner and continue to shorten the spawning season if ingress timing remains the same or changes less than egress times. In fishes, climate change driven shifts in phenology have been shown to negatively impact reproduction success and recruitment (Both et al. 2006; Watanuki et al. 2009). For river herring spawning within the ASW, shifts towards earlier egress dates has reduced time on the spawning grounds and may negatively impact spawning success and recruitment.

Trends in the phenological response to changing thermal regimes within a watershed were observed at the decadal scale; therefore, variation in population level responses to relatively cool or warm springs for a given year within a decade might also be observable. Correlations between the inter-annual variation in the timing of egress and both the annual mean temperature and rate of temperature change across the range of predicted egress days were not significant.
However, the correlations did trend towards earlier egress timing when mean annual water
temperatures over the range of egress dates were warmer (Fig S4). Plasticity in migration
timing, and subsequently spawning activity, could be optimized to avoid mismatches in resource
availability (Cushing 1990). Phenological shifts in response to climate change have been
observed in many inland fish populations (Lynch et al. 2016). However, research on brook trout
suggests that the rate of climate change can outpace compensatory responses and lead to a
decline in population abundances (Bassar et al. 2016). More work is needed to understand the
limits of adaptation to climate change by river herring.

Comparing presence/absence and abundance data for spawning phenology metrics
The use of presence/absence data at multiple stations to measure changes in phenology is a novel method
that required validation. The established approach to measuring timing of anadromous fishes is
percent-of-run abundance percentiles using count data at stationary locations. Our predictions
using presence/absence data were within ± 7 days (average ± 3.5) of those using abundance data
in a nearby system. These results show that presence/absence data, which are much less labor
intensive and more readily accessible than abundance data, are a viable proxy for abundance data
when estimating measures of phenology. We encourage further examination of other long-term
datasets for signals in shifting phenology using presence/absence data when abundance data are
unavailable.

Implications There has been increased interest in the incorporation of climate change effects (e.g.
changes in phenology) into fisheries management strategies (Haak and Williams 2012; Peer and
Miller 2014; Hare et al. 2016; Paukert et al. 2017). Management strategies for river herring so
far have focused on the effects of increased fishing efforts and have attempted to mitigate
historical overfishing through moratoria (but see Hare et al. 2016). While moratoria provide a
significant reduction in fishing mortality, it may not be sufficient to return stocks to historical levels of abundance in the face of warming waters and changing climate, particularly in the species’ southern range (Tommasi et al. 2015). Current river herring stocks in North Carolina (White et al. 2017) and other Atlantic states (ASMFC 2017) remain in a depleted state.

Spawning phenologies of river herring in the ASW and recruitment should continue to be monitored. In the event that the fishery is re-opened, information on spawning migrations could be used in an adaptive management strategy framework (Peer and Miller 2014). It is important to note the differences between alewife and blueback herring spawning migration behaviors and apparent responses to increased vernal warming rate. Examining the shape of the phenology model curves provides insight into such differences (Fig. 2). Alewife have a much broader spawning migration season with evident pulses in migration, which appear as humps in the GAM (GAMs don’t assume any particular shape). Comparatively, blueback herring spawning migrations follow a more unimodal distribution, despite also migrating upstream in pulses. The same patterns and contrasts in migration behavior have been seen in the Choptank River, MD by Ogburn et al. (2017) when using DIDSON to monitor spawning runs. The shift in spawning migration phenology for alewife has resulted in an 11 day truncation of the spawning season over four decades (Table 1), however considerable changes in ingress and egress timing have both occurred simultaneously (16 and 27 days). This is in strong contrast to blueback herring, which have maintained ingress timing (5 day change over three decades) but have egressed substantially earlier over time (23 days earlier over three decades). The variation in phenological changes may be due to different conditions encountered in preferred spawning habitat, as stream temperatures and water quality can vary widely throughout a watershed (Isaak et al. 2014).

Generally, alewife prefer more lentic habitats compared to blueback herring (Loesch and Lund
However, river herring in the ASW have a high-degree of overlap in spawning habitat use, due in part to the slow flowing tributaries (Walsh et al. 2005; Personal observation), which makes spatial separation an unlikely driver of phenological variation. Physiological differences in thermal tolerances are most likely to influence spawning migration (Mullen et al. 1986).

The 30% reduction in spawning season length for blueback herring is concerning, considering their already depressed abundance in this region. The most recent stock assessment of blueback herring estimated the ASW population of age 3+ (sexually mature) fish to be 7.5 million fish in 2014; just six percent of the 127 million fish in 1976 (White et al. 2017). The truncation of time spent on the spawning grounds may have ramifications for recruitment through effects on adult spawning (i.e., reduced chances for optimal spawning conditions) or trophic or habitat mismatches for larvae and juveniles (Wright and Trippel 2009; Ohlberger et al. 2014). Tommasi et al. (2015) found that increased temperatures in June were associated with lower abundance levels of juvenile blueback herring in the Chowan River, NC (a tributary of ASW); they hypothesized the decreased recruitment was due to temperatures exceeding an optimal temperature and predicted that future warming would lead to reduced recruitment in southern populations of river herring. In addition to temperatures experienced by juveniles, we recommend future research test for a relationship between spawning phenology and recruitment in river herring.

Acknowledgements This research was funded by a North Carolina Division of Marine Fisheries Coastal Recreational Fishing License Fund grant (NCDENR Task Order #6426). We thank past and present members of the North Carolina Division of Marine Fisheries in Elizabeth City, NC for their work in data collection and entry.
REFERENCES

https://mc06.manuscriptcentral.com/cjfas-pubs

Collier, R.S., and Odom, M.C. 1989. Obstructions to anadromous fish migration. North Carolina Department of Natural Resources and Community Development and Environmental Protection Agency, National Estuary Program, APES Project No. 88-12, Raleigh, N.C.

741 *Globularia alypum* and *Erica multiflora* in Mediterranean shrubland under experimental
743 10.1093/aob/mcn090.

744 Quinn, T.P., and Adams, D.J. 1996. Environmental changes affecting the migratory timing of

746 Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., and Toomey, M.
747 2013. Climate change, phenology, and phenological control of vegetation feedbacks to
748 the climate system. Agric. For. Meteorol. 169: 156-173. doi:

751 pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC
752 Bioinformatics, 12: 77. doi: 10.1186/1471-2105-12-77.

757 conserving biodiversity under climate change. *EVOL. APP.* 4(2): 326-337. doi:

Tables

Table 1. Logistic GAM-derived migration metrics for alewife and blueback herring spawning in the Albemarle Sound, NC watershed. Metrics are ordinal date of ingress (5% probability of presence on left hand side of the distribution), egress (5% probability on right hand side), peak (maximum presence probability in a unimodal curve or mean day of maximum presence probabilities in bimodal/plateaued curve), and season length estimations (difference between ordinal dates of ingress and egress). The 95% confidence intervals for ingress, egress and peak are given in parentheses. Some estimates of ingress and egress are extrapolated predictions and are denoted with an asterisk (*). For migration metrics estimated by extrapolation, we also provide estimates of ingress and egress based upon first presence and last presence in brackets.

Alewife

<table>
<thead>
<tr>
<th>Decade</th>
<th>Ingress</th>
<th>Egress</th>
<th>Peak</th>
<th>Season Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>43 (37-48)</td>
<td>129 (124-138)</td>
<td>82</td>
<td>86</td>
</tr>
<tr>
<td>1980</td>
<td>48 [≤55]*</td>
<td>122 (113-127)</td>
<td>81</td>
<td>74 [≥67]</td>
</tr>
<tr>
<td>2000</td>
<td>24 [≤34]*</td>
<td>107 (104-110)</td>
<td>70 (67-73)</td>
<td>83 [≥73]</td>
</tr>
<tr>
<td>2010</td>
<td>27 (22-31)</td>
<td>102 (100-104)</td>
<td>70 (67-73)</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Difference</th>
<th>Ingress Diff</th>
<th>Egress Diff</th>
<th>Peak Diff</th>
<th>Season Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970s vs 2010s</td>
<td>-16</td>
<td>-27</td>
<td>-12</td>
<td>-11</td>
</tr>
<tr>
<td>Per Decade</td>
<td>-4</td>
<td>-6.75</td>
<td>-3</td>
<td>-2.75</td>
</tr>
</tbody>
</table>

Blueback Herring

<table>
<thead>
<tr>
<th>Decade</th>
<th>Ingress</th>
<th>Egress</th>
<th>Peak</th>
<th>Season Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>76 (73-79)</td>
<td>>150 [≥128]*</td>
<td>117 (105-145)</td>
<td>>74 [≥52]</td>
</tr>
<tr>
<td>2000</td>
<td>71 (70-73)</td>
<td>117 (116-119)</td>
<td>95 (88-102)</td>
<td>46</td>
</tr>
<tr>
<td>2010</td>
<td>74 (73-75)</td>
<td>115 (114-116)</td>
<td>95 (90-101)</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Difference</th>
<th>Ingress Diff</th>
<th>Egress Diff</th>
<th>Peak Diff</th>
<th>Season Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Decade</td>
<td>-1.66</td>
<td>-7.66 [≤-3]</td>
<td>-4.33</td>
<td>-6 [≤-2]</td>
</tr>
</tbody>
</table>
List of Figures

Fig 1. The North Carolina Division of Marine Fisheries river herring spawning habitat survey has been conducted along their migration path (dark line) from 1973 – 2016. During this time period, 325 locations (small circles) have been sampled throughout the Albemarle Sound, North Carolina watershed.

Fig 2. Logistic GAM-derived predictions of (a) alewife and (b) blueback herring presence probability. Probabilities were modeled using ordinal day, decade, distance proportion, and ordinal day * decade for samples collected in the North Carolina Division of Marine Fisheries river herring spawning habitat survey throughout the Albemarle Sound, NC watershed. Solid curves are model predictions over dates sampled while dotted curves are extrapolated predictions; points represent the raw presence proportions for all nets set on each day of the decade. Predicted presence probabilities are shown as a function of ordinal day while holding other covariates at mean values. Black horizontal line at 5% for estimates of ingress and egress.

Fig 3. Presence proportions for (a) alewife and (b) blueback herring at 36 sampling locations regularly sampled across four decades of North Carolina Division of Marine Fisheries river herring sampling. Proportions are calculated from samples taken on any given day within the early (1973 – 1988) or late (2001 – 2016) time periods.

Fig 4. Estimates of ingress/egress from the phenology models (PM) can be compared with temperature predicted (TM) ingress/egress dates. We input early decade PM predicted dates (PM) of ingress (open stars) and egress (solid stars) into the 1973-1988 water temperature and ordinal day models (lines) to identify associated temperatures. Those early decade-predicted temperatures of ingress and egress are then input into the 2001-2016 temperature and ordinal day regression to predict a date of ingress and egress for the late decade period (TM2010) that can be compared to the late decade PM predicted ingress/egress date (PM2010). Water temperatures associated with early decade egress for alewife and blueback herring were 17.2 C and 17.9 C, respectively; TM2010 egress dates (solid stars) for these two species were estimated at day 109 and 114 and were similar to the PM2010 egress dates (solid stars) of day 102 and 115. Blueback herring ingress was also examined using the same approach. The PM1980 associated ingress temperature was 13.3 C; the estimated date of ingress based on temperature (open star; TM2010) was day 83 which was slightly later than the estimated date of ingress (day 74; PM2010) from the phenology model. The blue shading represents the 95% CI.
Figures

Figure 1
Figure 2
Figure 3
Figure 4