test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/11181

Title: Hybrid Mobile Robot System: Interchanging Locomotion and Manipulation
Authors: Ben-Tzvi, Pinhas
Advisor: Goldenberg, Andrew A.
Zu, Jean W.
Department: Mechanical and Industrial Engineering
Keywords: Mobile Robots
Teleoperation
Mechatronic Systems
Control System Design
Autonomous Navigation
Simulations & Animations
Prototype Development
Issue Date: 30-Jul-2008
Abstract: This thesis presents a novel design paradigm of mobile robots: the Hybrid Mobile Robot system. It consists of a combination of parallel and serially connected links resulting in a hybrid mechanism that includes a mobile robot platform for locomotion and a manipulator arm for manipulation, both interchangeable functionally. All state-of-the-art mobile robots have a separate manipulator arm module attached on top of the mobile platform. The platform provides mobility and the arm provides manipulation. Unlike them, the new design has the ability to interchangeably provide locomotion and manipulation capability, both simultaneously. This was accomplished by integrating the locomotion platform and the manipulator arm as one entity rather than two separate and attached modules. The manipulator arm can be used as part of the locomotion platform and vice versa. This paradigm significantly enhances functionality. The new mechanical design was analyzed with a virtual prototype that was developed with MSC Adams Software. Simulations were used to study the robot’s enhanced mobility through animations of challenging tasks. Moreover, the simulations were used to select nominal robot parameters that would maximize the arm’s payload capacity, and provide for locomotion over unstructured terrains and obstacles, such as stairs, ditches and ramps. The hybrid mobile robot also includes a new control architecture based on embedded on-board wireless communication network between the robot’s links and modules such as the actuators and sensors. This results in a modular control architecture since no cable connections are used between the actuators and sensors in each of the robot links. This approach increases the functionality of the mobile robot also by providing continuous rotation of each link constituting the robot. The hybrid mobile robot’s novel locomotion and manipulation capabilities were successfully experimented using a complete physical prototype. The experiments provided test results that support the hypothesis on the qualitative and quantitative performance of the mobile robot in terms of its superior mobility, manipulation, dexterity, and ability to perform very challenging tasks. The robot was tested on an obstacle course consisting of various test rigs including man–made and natural obstructions that represent the natural environments the robot is expected to operate on.
URI: http://hdl.handle.net/1807/11181
Appears in Collections:Doctoral
Department of Mechanical & Industrial Engineering - Doctoral theses

Files in This Item:

File Description SizeFormat
Ben-Tzvi_Pinhas_200806_PhD_thesis.pdfP. Ben-Tzvi PhD Thesis5.93 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft