test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/11188

Title: Modeling Injection and Ignition in Direct Injection Natural Gas Engines
Authors: Cheng, Xu Jr.
Advisor: Wallace, James S.
Department: Mechanical and Industrial Engineering
Keywords: Natural Gas Engine
Modeling
Direct Injection
Ignition
CFD
Alternative Energy
Glow Plug
Issue Date: 30-Jul-2008
Abstract: With increasing concerns about the harmful effects of conventional liquid fossil fuel emissions, natural gas has become a very attractive alternative fuel to power prime movers and stationary energy conversion devices. This research studies the injection and ignition numerically for natural gas (mainly methane) as a fuel applied to diesel engine. Natural gas injector and glow plug ignition enhancement are two of the most technical difficulties for direct injection natural gas engine design. This thesis models the natural gas injector, and studies the characteristics of the internal flow in the injector and natural gas jet in the combustion chamber during the injection process. The poppet valve model and pintle valve model are the first reported models to simulate the natural gas injector to improve the traditional velocity and pressure boundary conditions. This thesis also successfully models the glow plug assisted natural gas ignition and combustion processes by developing a glow plug discretized model and a novel virtual gas sub-layer model. Glow plug discretized model can describe the transient heat transfer, and adequately represents the thin layers of heat penetration and the local temperature difference due to the cold gas jet impingement. The virtual gas sub-layer model considers complicated physical processes, such as chemical reaction, heat conduction, and mass diffusion within the virtual sub-layers without significantly increasing computational time and load. KIVA-3V CFD code was chosen to simulate the fluid flow. Since the KIVA-3V is designed specifically for engine research application with conventional liquid fuels, many modifications have been implemented to facilitate this research.
URI: http://hdl.handle.net/1807/11188
Appears in Collections:Doctoral
Department of Mechanical & Industrial Engineering - Doctoral theses

Files in This Item:

File Description SizeFormat
Cheng_Xu_200804_PhD_thesis.pdf.pdf6.46 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft