test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/11200

Title: Contrasts in Thermal Dffusion and Heat Accumulation Effects in the Fabrication of Waveguides in Glasses using Variable Repetition Rate Femtosecond Laser
Authors: Eaton, Shane
Advisor: Herman, Peter R.
Department: Electrical and Computer Engineering
Keywords: Femtosecond laser
Waveguide
Issue Date: 31-Jul-2008
Abstract: A variable (0.2 to 5 MHz) repetition rate femtosecond laser was applied to delineate the role of thermal diffusion and heat accumulation effects in forming low-loss optical waveguides in borosilicate glass across a broad range of laser exposure conditions. For the first time, a transition from thermal diffusion-dominated transport at 200-kHz repetition rate to strong heat accumulation at 0.5 to 2 MHz was observed to drive significant variations in waveguide morphology, with rapidly increasing waveguide diameter that accurately followed a simple thermal diffusion model over all exposure variables tested. Amongst these strong thermal trends, a common exposure window of 200-mW average power and ~15-mm/s scan speed was discovered across the range of 200-kHz to 2-MHz repetition rates for minimizing insertion loss despite a 10-fold drop in laser pulse energy. Waveguide morphology and thermal modeling indicate that strong thermal diffusion effects at 200 kHz give way to a weak heat accumulation effect at ~1uJ pulse energy for generating low loss waveguides, while stronger heat accumulation effects above 1-MHz repetition rate offered overall superior guiding. The waveguides were shown to be thermally stable up to 800°C, showing promise for high temperature applications. Using a low numerical aperture (0.4) lens, the effect of spherical aberration was reduced, enabling similar low-loss waveguides over an unprecedented 520-um depth range, opening the door for multi-level, three-dimensional, optical integrated circuits. In contrast to borosilicate glass, waveguides written in pure fused silica under similar conditions showed only little evidence of heat accumulation, yielding morphology similar to waveguides fabricated with low repetition rate (1 kHz) Ti-Sapphire lasers. Despite the absence of heat accumulation in fused silica owing to its large bandgap and high melting point, optimization of the laser wavelength, power, repetition rate, polarization, pulse duration and writing speed resulted in uniform, high-index contrast waveguide structures with low insertion loss. Optimum laser exposure recipes for waveguide formation in borosilicate and fused silica glass were applied to fabricate optical devices such as wavelength-sensitive and insensitive directional couplers for passive optical networks, buried and surface microfluidic and waveguide networks for lab-on-a-chip functionality, and narrowband grating waveguides for sensing.
URI: http://hdl.handle.net/1807/11200
Appears in Collections:Doctoral
The Edward S. Rogers Sr. Department of Electrical & Computer Engineering - Doctoral theses

Files in This Item:

File Description SizeFormat
Eaton_Shane_200806_PhD_thesis.movAnimation (Fig 4.1)3.36 MBVideo Quicktime
View/Open
Eaton_Shane_200806_PhD_thesis.pdfPhD thesis (pdf)9.1 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft