test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/11257

Title: A Self-renewing Multi-potent Population of Cells and their Progeny Maintain Homeostasis of the Mesenchymal Compartment
Authors: Sarugaser, Rahul
Advisor: Stanford, William L.
Davies, John Edward
Department: Biomedical Engineering
Keywords: Mesenchymal
Stem Cells
Issue Date: 1-Aug-2008
Abstract: Recent evidence suggests that “mesenchymal stem cells” (MSCs) are resident in the perivascular compartment of connective tissues. However, since the definition of a stem cell assumes that these progenitors have clonal self-renewal and multi-lineage differentiation potential, the term “MSC” has been criticised, as it has been impossible to isolate definitive clonally derived “MSCs.” To test for this most basic definition of a stem cell, here it is shown that human umbilical cord perivascular cells (HUCPVCs) are capable of multilineage differentiation in vitro and, more importantly, in vivo, displaying the ability to differentiate into functionally synthetic cells that direct and contribute to rapid connective tissue healing by producing bone, cartilage and fibrous stroma in a mouse injury model. Uniquely, these cells can be enriched to >1:3 clonogenic frequency in early passage culture, making it possible to isolate clones and daughter sub-clones from mixed gender suspensions, determined to be definitively single-cell-derived by Y-chromosome fluorescent in situ hybridization (FISH) analysis. Each clone was assayed for multi-lineage differentiation capacity into the five mesenchymal lineages: myogenic, adipogenic, chondrogenic, osteogenic and fibroblastic (stroma). The observation that daughter sub-clones possess equal or lesser differentiative potential to their respective parent clones demonstrated the two intrinsic properties of stem cells in vitro: clonal self-renewal and multi-lineage differentiation. This evidence provides a new hierarchical structure of robust MSCs self-renewing to produce more restricted progenitors that gradually lose differentiation potential until a state of complete restriction to the fibroblast is reached. The methods described herein combined with recognition of this lineage hierarchy provides a significant advance to the understanding of MSC biology, and will enable interrogation of the properties of robust self-renewal and differentiation of MSCs in serially transplanted living recipients.
URI: http://hdl.handle.net/1807/11257
Appears in Collections:Doctoral
Institute of Biomaterials and Biomedical Engineering - Doctoral theses

Files in This Item:

File Description SizeFormat
Sarugaser_Rahul_200803_PhD_thesis.pdf3.24 MBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.