test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/11274

Title: Targeting Inflammation to Reduce Secondary Injury after Hemorrhagic Stroke
Authors: Wasserman, Jason
Advisor: Schlichter, Lyanne C.
Department: Physiology
Keywords: intracerebral hemorrhage
Issue Date: 1-Aug-2008
Abstract: Intracerebral hemorrhage (ICH) is a devastating form of stroke that results from rupture of a blood vessel in the brain. Tissue inside the hematoma is irreversibly damaged soon after ICH onset and when this thesis research began, there was a dearth of information regarding pathological changes outside the hematoma. Inflammation is often proposed as a mechanism of injury, but very little information was available to show that inflammatory cells were in the right place at the right time to cause secondary brain injury. Using the collagenase-induced model of ICH, this work sought to better define spatial and temporal relationships between secondary brain injury and the inflammatory response after ICH. To test the hypothesis that reducing inflammation can protect the brain from secondary injury, minocycline, an antibiotic with established anti-inflammatory effects, was administered 6 hours after ICH onset. A small number of neurons die in the parenchyma bordering the hematoma between 6 hours and 3 days after ICH onset. This area was not associated with neutrophil infiltration, and most activated microglia/macrophages did not accumulate until after most neuron death had occurred. Despite a pronounced microglial response and prolonged increase in expression of many inflammatory genes, including complement receptor-3, interleukin-1 beta, interleukin-6, and interleukin-1 converting enzyme, no dying neurons were observed further outside the hematoma at any time. Interestingly, less early neuron death was observed in aged than in young animals, without a concomitant difference in the amount of tissue lost at 28 days. However, aged animals had less early microglial activation and a larger residual lesion, which might have resulted from impaired phagocytosis by activated microglia/macrophages. Minocycline was less effective in reducing microglial activation in aged animals, and did not reduce neuron death in either young or aged animals. Edema and BBB disruption was associated with degradation of the basal lamina protein, collagen type IV, and that damaged vessels are associated with tumor necrosis factor-alpha (TNFα)-positive neutrophils and active matrix metalloprotease-12 (MMP-12), all of which were reduced by delayed minocycline treatment. In contrast to ischemic stroke, there is a limited ‘penumbra’ outside the hematoma. Nevertheless, BBB damage in this region appears to be a potential target for protection. Furthermore, the prominent inflammatory response that continues for days after ICH does not appear to be associated with damage to other areas of the brain. Minocycline appears to protect the BBB by reducing neutrophil infiltration and the MMP-12 mediated basal lamina degradation. Future studies should investigate other targets for protection (i.e., white matter injury), and seek drugs that modulate the inflammatory response in aged animals and promote lesion resolution.
URI: http://hdl.handle.net/1807/11274
Appears in Collections:Doctoral
Department of Physiology - Doctoral theses

Files in This Item:

File Description SizeFormat
Wasserman_Jason_K_200806_PhD_thesis.pdf3.68 MBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.