test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/11277

Title: Novel PMOs: Studies in Periodic Mesoporous Organosilicas
Authors: Whitnall, Wesley
Advisor: Ozin, Geoffrey Alan
Department: Chemistry
Keywords: mesoporous
silica
organosilica
PMO
Issue Date: 1-Aug-2008
Abstract: The field of mesoporous materials has been expanding rapidly in recent years, and has come to include a wide variety of different types of materials from organic to inorganic, as well as hybrid materials that encompass both worlds. The following account explores one type of mesoporous materials, specifically those consisting of silica with an attached organic group that have come to be known as periodic mesoporous organosilicas (PMOs). Much of the work here involves incorporating new types of organic groups into a mesoporous framework for the purpose of adding a useful functionality, either chemical or physical, to the material. Firstly it is shown that a borazine moiety can be successfully incorporated into a mesoporous material with a very high loading. It was further shown that once incorporated into the material many of the borazine moieties are available for further chemical reactions with acids and transition metals. Next, a new class of materials termed hybrid periodic mesoporous organosilicas (HPMOs) was developed that was able to circumvent many of the problems associated with PMO self-assembly. Now, using very simple techniques, virtually any type of silsesquioxane can be incorporated into a PMO, and the organic group can be specifically at the surface of the pores, thereby maximizing its accessibility. And finally, a PMO is made that incorporates buckyballs, and it is shown that, given the right synthetic conditions, the buckyballs are homogeneously distributed throughout the material.
URI: http://hdl.handle.net/1807/11277
Appears in Collections:Doctoral
Department of Chemistry - Doctoral theses

Files in This Item:

File Description SizeFormat
Whitnall_Wesley_A_200801_PhD_thesis.pdf2.3 MBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft