test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/11278

Title: Role of the Cell Adhesion Molecule L1 during Early Neural Development in Zebrafish
Authors: Xiang, Wanyi
Advisor: Siu, Chi-Hung
Department: Biochemistry
Keywords: zebrafish
neural development
cell adhesion molecule L1
brain ventricle formation
polarity
axonal pathfinding
Issue Date: 1-Aug-2008
Abstract: The neural cell adhesion molecule L1 is a member of the immunoglobulin superfamily and it mediates many adhesive interactions during brain development. Mutations in the L1 gene are associated with a spectrum of X-linked neurological disorders known as CRASH or L1 syndrome. The objective of this thesis was to use the zebrafish model to investigate the molecular mechanisms of L1 functions and the pathological effects of its mutations. Zebrafish has two L1 homologs, L1.1 and L1.2. Inhibition of L1.1 expression by antisense morpholino oligonucleotides resulted in phenotypes that showed resemblances to L1 patients. However, knockdown of L1.2 expression did not result in notable neural defects. Furthermore, analysis of the expression pattern of L1.1 has led to the discovery of a novel soluble L1.1 isoform, L1.1s. L1.1s is an alternatively spliced form of L1.1, consisting of the first four Ig-like domains and thus a soluble secreted protein. L1.1 morphants exhibited disorganized brain structures with many having an enlarged fourth/hindbrain ventricle. Further characterization revealed aberrations in ventricular polarity, cell patterning and proliferation and helped differentiate the functions of L1.1 and L1.1s. While L1.1 plays a pivotal role in axonal outgrowth and guidance, L1.1s is crucial to brain ventricle formation. Significantly, L1.1s mRNA rescued many anomalies in the morphant brain, but not the trunk phenotypes. Receptor analysis confirmed that L1.1 undergoes heterophilic interactions with neuropilin-1a (Nrp1a). Peptide inhibition studies demonstrated further the involvement of L1.1s in neuroepithelial cell migration during ventricle formation. In the spinal cord, spinal primary motoneurons expressed exclusively the full-length L1.1, and abnormalities in axonal projections of morphants could be rescued only by L1.1 mRNA. Further studies showed that a novel interaction between the Ig3 domain of L1.1 and Unplugged, the zebrafish muscle specific kinase (MuSK), is crucial to motor axonal growth. Together, these results demonstrate that the different parts of L1.1 contribute to the diverse functions of L1.1 in neural development.
URI: http://hdl.handle.net/1807/11278
Appears in Collections:Doctoral
Department of Biochemistry - Doctoral theses

Files in This Item:

File Description SizeFormat
xiang_wanyi_200806_PhD_thesis.pdf25.2 MBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft