test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/16731

Title: An Integrated Multi-model Approach for Predicting the Impact of Household Travel on Urban Air Quality and Simulating Population Exposure
Authors: Hatzopoulou, Marianne
Advisor: Miller, Eric
Department: Civil Engineering
Keywords: Transportation Emissions Modelling
Air Quality Modelling
Transport Policy Appraisal
Environmental Impacts of Transport
Issue Date: 19-Jan-2009
Abstract: The population and economic growth experienced by Canadian metropolitan areas in the past twenty years, has been associated with increased levels of car ownership and vehicle kilometres travelled leading to a deterioration of air quality and public health and an increase in greenhouse gas emissions. The need to modify urban growth patterns has motivated planning agencies in Canada to develop a broad range of policies aiming at achieving a more sustainable transportation sector. The challenge however, remains in the ability to test the effectiveness of proposed policy measures. This situation has led to a renewed interest in integrated land-use and transport models to support transport policy appraisal. This research is motivated by the need to improve transport policy appraisal through the use of integrated land-use and transport models linked with a range of sub-models that can reflect transport externalities. This research starts with an exploration of the transport policy environment in Canada through a questionnaire-based survey conducted with planners and policy-makers. The survey results highlight the need for tools reflecting the sustainability impacts of proposed policies. While the second part of this research explores sustainability indicators and recommends a set of social, economic, and environmental measures, linked with integrated land-use and transport models; effort is dedicated to estimate the environmental indicators as part of this thesis. As such, the third part of this research involves the development of an emission-dispersion-exposure modelling framework. The framework includes a suite of sub-models including an activity-based travel demand model (TASHA), an emission factor model (Mobile6.2C), a meteorological model (CALMET), and a dispersion model (CALPUFF). The framework is used to estimate link-based emissions of light-duty vehicles in the Greater Toronto Area under a base scenario for 2001. Dispersion of emissions is then conducted and linked with population in order to estimate exposure to air pollution.
URI: http://hdl.handle.net/1807/16731
Appears in Collections:Doctoral
Department of Civil Engineering - Doctoral theses

Files in This Item:

File Description SizeFormat
Hatzopoulou_Marianne_200811_PhD_thesis.pdf33.55 MBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.