test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/16740

Title: Behavioural Model Fusion
Authors: Nejati, Shiva
Advisor: Chechik, Marsha
Department: Computer Science
Keywords: Model Merging
Model Composition
Model Management
Behavioural Models
Temporal Logic
State Machine
Issue Date: 19-Jan-2009
Abstract: In large-scale model-based development, developers periodically need to combine collections of interrelated models. These models may capture different features of a system, describe alternative perspectives on a single feature, or express ways in which different features alter one another's structure or behaviour. We refer to the process of combining a set of interrelated models as "model fusion". A number of factors make model fusion complicated. Models may overlap, in that they refer to the same concepts, but these concepts may be presented differently in each model, and the models may contradict one another. Models may describe independent system components, but the components may interact, potentially causing undesirable side effects. Finally, models may cross-cut, modifying one another in ways that violate their syntactic or semantic properties. In this thesis, we study three instances of the fusion problem for "behavioural models", motivated by real-world applications. The first problem is combining "partial" models of a single feature with the goal of creating a more complete description of that feature. The second problem is maintenance of "variant" specifications of individual features. The goal here is to combine the variants while preserving their points of difference (i.e., variabilities). The third problem is analysis of interactions between models describing "different" features. Specifically, given a set of features, the goal is to construct a composition such that undesirable interactions are absent. We provide an automated tool-supported solution to each of these problems and evaluate our solutions. The main novelties of the techniques presented in this thesis are (1) preservation of semantics during the fusion process, and (2) applicability to large and evolving collections of models. These are made possible by explicit modelling of partiality, variability and regularity in behavioural models, and providing semantic-preserving notions for relating these models.
URI: http://hdl.handle.net/1807/16740
Appears in Collections:Doctoral
Department of Computer Science - Doctoral theses

Files in This Item:

File Description SizeFormat
Nejati_Shiva_200811_PhD_thesis.pdf8.36 MBAdobe PDF

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.