test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/16795

Title: Droplet Deposition in Solid Ink Printing
Authors: Li, Ri
Advisor: Ashgriz, Nasser
Chandra, Sanjeev
Department: Mechanical and Industrial Engineering
Keywords: droplet deposition
solid ink
inkjet printing
droplet generation
pulsed jet
droplet coalescence
Issue Date: 20-Jan-2009
Abstract: Introduced in 1991, solid ink color printing technology is widely used in the office printing, prepress proofing, and wide format color printing markets. Ink droplets are first deposited on a rotating drum and then transferred to paper to reproduce images with high print quality. The objective of this thesis is to develop scientific knowledge of ink droplet deposition, which is needed for precise image buildup on the drum surface. The first problem studied in the thesis is droplet formation from the printhead with varied working voltages and jetting frequencies. Attention is paid to the formation of satellite droplets, the contraction of ligaments and the startup of high frequency jetting. The jetting conditions for obtaining consistent droplet generation with satellites are determined. A theoretical model is developed to predict the lifetime of ligaments. The second problem we studied is the deposition of single droplets on solid surfaces. The surface texture and final shape of deposited droplets are correlated with impact conditions, which include printhead temperature, substrate temperature, distance from printhead to substrate, and the type of substrate surface. An analytical model is developed to evaluate the interaction of oscillation and viscous damping in the droplet during impact. The third problem covered in the thesis is the deposition of multiple ink droplets on the drum surface. Interaction between droplets causes drawback effect, which degrades print quality. We define a parameter to quantify the drawback effect with varied deposition conditions. A simple model is provided to predict conditions for making continuous lines based on the results of two ink droplets deposition. To understand the hydrodynamics in causing drawback effect, a series of experiments using large liquid droplets are carried out. Focus is put on the evolution of spread length and dynamics of contact line. Correlations for maximum and minimum spread lengths are developed, which are used to reveal the cause of drawback effect in the deposition of ink droplets.
URI: http://hdl.handle.net/1807/16795
Appears in Collections:Doctoral
Department of Mechanical & Industrial Engineering - Doctoral theses

Files in This Item:

File Description SizeFormat
Li_Ri_200811_PhD_thesis.pdf11.42 MBAdobe PDF

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.