test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Master >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/17211

Title: Applications and Orbit Scenarios for a Multistatic InSAR Formation Flying Microsatellite Mission
Authors: Peterson, Erica H.
Advisor: Zee, Robert E.
Fotopoulos, Georgia
Department: Aerospace Science and Engineering
Keywords: microsatellites
Issue Date: 26-Feb-2009
Abstract: The Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies is currently designing CanX-4 and CanX-5, a pair of formation-flying nanosatellites that will target centimeter-level position determination and sub-meter control. Once formation flight has been demonstrated, future missions can carry payloads designed to exploit these capabilities. Earth Observation is one such application that can benefit greatly from the availability of multiple platforms with precise position determination and attitude control. This work explores multistatic interferometric synthetic aperture radar (InSAR) as a particularly promising implementation of formation flight. Several mission scenarios are considered, including three commonly proposed InSAR constellation configurations, namely the Cartwheel, the Cross-Track Pendulum, and the Car-Pe configuration, as well as three large ( kilowatt) SAR transmitters (L-, C- and X-band) and one microsatellite transmitter (X-band, 150W). Using a framework of STK and MATLAB simulation and analysis tools, each case is evaluated with respect to the available interferometric baselines, ground coverage, resolution, and utility for selected applications including digital elevation modeling, moving target detection, and superresolution imagery. The “large” X-band transmitter is found to produce the most favorable operating area and resolution, and the Car-Pe configuration provides the greatest utility and flexibility for a combination of the three selected applications.
URI: http://hdl.handle.net/1807/17211
Appears in Collections:Master
Institute for Aerospace Studies - Master theses

Files in This Item:

File Description SizeFormat
Peterson_Erica_H_200811_Master_thesis.pdf1.8 MBAdobe PDF

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.