test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/17243

Title: Probing Septin Function Through Interaction Screens: Identification of Novel Septins and Possible Regulatory Mechanisms
Authors: Steels, Jonathan D.
Advisor: Trimble, William S.
Department: Biochemistry
Keywords: septin, GTP, sperm, annulus, SUMO
Issue Date: 26-Feb-2009
Abstract: Septins are a family of guanine nucleotide-binding proteins that function in eukaryotic cell division, where they form a high-order cortical structure at the site of division, which is essential in most eukaryotes. Expanded roles have evolved for septins in metazoans, where they also have essential functions in terminally-differentiated cell types, such as neurons and spermatozoa. Specific details of septin function are lacking in most roles described, due at least in part to the limited number of characterized binding partners. In this work, yeast two-hybrid screens and pull-downs from tissue homogenate were used to identify novel septin binding partners for subsequent characterization. The neuron-enriched septin, SEPT5, interacted directly with SUMO E3 ligases of the PIAS family. However, I was not able to demonstrate endogenous sumoylation of SEPT5 and SUMO isoforms did not concentrate with the septins during cytokinesis. SEPT5 also interacted with a novel septin, SEPT12, which I further characterized to be testis-specific and localized to the annulus in mature spermatozoa. Further, using SEPT12-specific reagents, I determined that the annulus forms via sequestration and subsequent segregation from the Golgi during spermiogenesis. SEPT9 pull-downs identified another novel testis-specific septin, SEPT14. Reagents specific to SEPT2 and SEPT9 also revealed a septin-rich structure in the seminiferous epithelium in close association with the ectoplasmic specialization. The specific role of septins in this structure awaits further characterization. Several other intriguing candidate septin-interaction partners were identified and the further study of their possible in vivo interaction with septins may provide substantial insight into the mechanisms of septin function in eukaryotes.
URI: http://hdl.handle.net/1807/17243
Appears in Collections:Doctoral
Department of Biochemistry - Doctoral theses

Files in This Item:

File Description SizeFormat
Steels_Jonathan_D_200811_PhD_Thesis.pdf8.48 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft