test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/17249

Title: An Exploration of the Structural, Electronic, and Anion Binding Properties of 2-Indolylphosphines
Authors: Yu, Joanne
Advisor: Farrar, David
Department: Chemistry
Keywords: X-ray crystallography
Issue Date: 26-Feb-2009
Abstract: 2-Indolylphosphines are unique ligands which have the capability for further phosphine modification by introducing substituents on an indolyl nitrogen centre. Substituents can vary in electronics, sterics, chirality, and can contain amino or phosphino groups which result in a multidentate (P,N)- or (P,P)-2-indolylphosphine. X-ray crystallography was used predominantly to examine and analyze the structural features of 2-indolyphosphines and their metal complexes. While the cone angles could not be determined crystallographically, the sum of the <CPC bond angles provided some information on the steric crowding around a phosphorus atom in selected 2-indolylphosphines. The symmetric tris-2-(3-methylindolyl)phosphine demonstrated anion binding ability through its three indolyl NH sites. Titrations to a series of selected anions were carried out; it was determined that tris-2-(3-methylindolyl)phosphine binds to these selected anions in a 1 : 1 receptor to anion binding ratio. Crystal structures of the fluoride and acetate complexes confirm the binding stoichiometry, and demonstrate the cooperative interaction of all three indolyl NH sites with the anion guest. Synthetic routes to new anion receptors with three or two indolyl NH donors were explored. The second type yielded a molecular cleft that was used in anion binding studies. The net basicity of a 2-indolylphosphine was determined through formation of a Ni(CO)3L complex. Net basicity can be tuned by changing the substituents on phosphorus or on an indolyl nitrogen centre. The [Cu(tris-2-(3-methylindolyl)phosphine)(phenanthroline)]BF4 complex is a discrete ion pair complex, exhibiting coordination chemistry at the phosphorus centre of the phosphine, while simultaneously hydrogen bonding through the indolyl NH sites to the BF4- anion. Complexes of the type [Pd(L)Cl(mu-Cl)]2 were analyzed by crystallography and the effect of net basicity on Pd-P bond length examined. The solid-state structures of (P,N)- and (P,P)-2-indolylphosphines were evaluated. In general, the sum of the <CPC bond angles increased from the parent unfunctionalized 2-indolylphosphine. The metal complexes of (P,N)- and (P,P)-2-indolylphosphines were assessed by crystallography to find possible trends of trans-influence. Lastly, a tetradentate tripodal ligand was synthesized by furnishing diphenylphosphino substituents on the indolyl nitrogen centres of tris-2-(3-methylindolyl)phosphine. The coordination of the tetradentate tripodal ligand to Pt(II) or Rh(I) resulted in five-coordinate trigonal bipyramidal complexes.
URI: http://hdl.handle.net/1807/17249
Appears in Collections:Doctoral
Department of Chemistry - Doctoral theses

Files in This Item:

File Description SizeFormat
Yu_Joanne_200811_PhD_thesis.pdf6.27 MBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.