test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/17282

Title: The Roles of Presenilin and FKBP14 in Drosophila Development and Notch Signalling
Authors: van de Hoef, Diana L.
Advisor: Boulianne, Gabrielle
Department: Molecular and Medical Genetics
Keywords: Genetic Screen
Issue Date: 26-Feb-2009
Abstract: The Roles of Presenilin and FKBP14 in Drosophila Development and Notch Signalling; Diana L. van de Hoef, Department of Molecular Genetics, University of Toronto, 2008. The multimolecular gamma-secretase complex cleaves type 1 transmembrane proteins such as Notch and one of the genes targeted in Alzheimer’s disease known as APP. This complex comprises four components, known as anterior pharynx defective 1, presenilin enhancer 2, nicastrin and presenilin. Presenilin is an aspartyl protease that comprises the catalytic core of gamma-secretase, and mutated forms of presenilin cause early-onset familial Alzheimer’s disease. To further define the role of Drosophila Presenilin (Psn), I performed a genetic modifier screen to identify Psn-interacting genes. One of the genes that was identified, known as FKBP14, encodes a peptidyl-prolyl isomerase that may be involved in protein folding in the ER. I demonstrate that an immunosuppressant drug known as FK506, which binds FKBPs and abrogates their function, reduced Psn, anterior pharynx defective 1 and presenilin enhancer 2 protein levels in vivo. I also show that FKBP14 colocalized with anterior pharynx defective 1 and Psn in the ER, suggesting a role in gamma-secretase stability. Consistent with this, I demonstrate that FKBP14 binds with Psn and mediates Psn stability and Notch signalling in vivo. To further characterize the role of FKBP14 in development, I analyzed its expression pattern and phenotypes of an FKBP14 null mutant. I show that FKBP14 localized to embryonic hemocytes and larval tissues, in addition to being expressed in developing egg chambers. FKBP14 function is required during development, since FKBP14 null mutants are recessive lethal. These mutants exhibited defects in larval disc development that resulted in eye, wing and notum phenotypes reminiscent of Psn dominant-negative and Notch-dependent phenotypes. Furthermore, FKBP14 mutants displayed enhanced apoptosis in larval tissues, suggesting a possible involvement in apoptosis regulation. I then examined the effects of FKBP14 overexpression, and observed enhanced Psn protein levels in vivo. Interestingly, co-expression of FKBP14 and Psn resulted in synergistic bristle phenotypes, suggesting a role for FKBP14 function in the Notch signalling pathway. Consistent with this, FKBP14 mutants enhanced Notch loss-of-function phenotypes in the wing. Altogether, my data demonstrate an essential role for FKBP14 during development, particularly in Psn protein maintenance and Notch signalling.
URI: http://hdl.handle.net/1807/17282
Appears in Collections:Doctoral
Department of Molecular Genetics - Doctoral theses

Files in This Item:

File Description SizeFormat
vandeHoef_Diana_L_200811_PhD_thesis.pdf6.01 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft