test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/17299

Title: Emergence of Unconventional Phases in Quantum Spin Systems
Authors: Bernier, Jean-Sebastien
Advisor: Kim, Yong Baek
Department: Physics
Keywords: physics
theoretical condensed matter
frustrated magnets
spin liquids
valence bond solids
cold atoms
biaxial nematicity
Mott insulators
superfluid
order by disorder
quantum fluctuations
Issue Date: 26-Feb-2009
Abstract: In this thesis, we investigate strongly correlated phenomena in quantum spin systems. In the first part of this work, we study geometrically frustrated antiferromagnets (AFMs). Generalizing the SU(2) Heisenberg Hamiltonian to Sp(N) symmetry, we obtain, in the large-N limit, the mean-field phase diagrams for the planar pyrochlore and cubic AFMs. We then use gauge theories to consider fluctuation effects about their respective mean-field configurations. We find, in addition to conventional Neel states, a plethora of novel magnetically disordered phases: two kinds of spin liquids, Z2 in 2+1D and U(1)in 3+1D, and several valence bond solids such as two and three-dimensional plaquette and columnar singlet states. We use the same approach to study the diamond lattice AFM which possesses extended classical ground state degeneracy. We demonstrate that quantum and entropic fluctuations lift this degeneracy in different ways. In the second part of the thesis, we study ultracold spinor atoms confined in optical lattices. We first demonstrate the feasibility of experimental realization of rotor models using ultracold spin-one Bose atoms in a spin-dependent and disordered optical lattice. We show that the ground state of such disordered rotor models with quadrupolar interactions can exhibit biaxial nematic ordering in the disorder-averaged sense, and suggest an imaging experiment to detect the biaxial nematicity in such systems. Finally, using variational wavefunction methods, we study the Mott phases and superfluid-insulator transition of spin-three bosons in an optical lattice with an anisotropic two dimensional optical trap. We chart out the phase diagrams for Mott states with n = 1 and n = 2 atoms per lattice site. We show that the long-range dipolar interaction stabilizes a state characterized by antiferromagnetic chains made of ferromagnetically aligned spins. We also obtain the mean-field phase boundary for the superfluid-insulator transition, and show that inside the superfluid phase and near the superfluid-insulator phase boundary, the system undergoes a first order antiferromagnetic-ferromagnetic spin ordering transition.
URI: http://hdl.handle.net/1807/17299
Appears in Collections:Doctoral
Department of Physics - Doctoral theses

Files in This Item:

File Description SizeFormat
Bernier_Jean-Sebastien_200811_PhD_thesis.pdf875.3 kBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft