test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/17301

Title: Arctic and Midlatitude Stratospheric Trace Gas Measurements Using Ground-based UV-visible Spectroscopy
Authors: Fraser, Annemarie
Advisor: Strong, Kimberly
Department: Physics
Keywords: UV-visible spectroscopy
ozone depletion
Arctic
NO2
Issue Date: 26-Feb-2009
Abstract: A ground-based, zenith-sky, UV-visible triple grating spectrometer was installed at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian High Arctic during polar springtime from 2004 to 2007 as part of the Canadian Arctic ACE (Atmospheric Chemistry Experiment) Validation Campaigns. From the solar spectra, ozone, NO2, and BrO vertical column densities (VCDs) have been retrieved using the DOAS (Differential Optical Absorption Spectroscopy) technique. This spectrometer, the UT-GBS (University of Toronto Ground-Based Spectrometer), was also deployed as part of the fourth Middle Atmosphere Nitrogen TRend Assessment (MANTRA) campaign in Vanscoy, Saskatchewan in August and September 2004. A near-identical spectrometer, the PEARL-GBS, was permanently installed at PEARL in August 2006 as part of the refurbishment of the laboratory by CANDAC (Canadian Network for the Detection of Atmospheric Change). Since then, the instrument has been making continuous measurements, with the exception of during polar night. Vertical columns of ozone and NO2 can be retrieved year-round. During the 2007 sunrise campaign, differential slant column densities (DSCDs) of OClO and VCDs of BrO were also retrieved. Ozone and NO2 DSCDs and VCDs from the UT-GBS were compared to the DSCDs and VCDs from three other UV-visible, ground-based, grating spectrometers that also participated in the MANTRA and Eureka campaigns. Two methods developed by the UV-visible Working Group of the NDACC (Network for the Detection of Atmospheric Composition Change) were followed. During MANTRA, the instruments were found to partially meet the NDACC standards. The comparisons from Eureka were an improvement on the MANTRA comparisons, and also partially met the NDACC standards. In 2007, the columns from the UT-GBS and PEARL-GBS were compared, and were found to agree within the NDACC standards for both species. Ozone and NO2 VCDs from the ground-based instruments were also compared to integrated partial columns from the ACE-FTS (ACE-Fourier Transform Spectrometer) and ACE-MAESTRO (ACE-Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) on board the ACE satellite. ACE-FTS partial columns were found to agree with the ground-based total columns, while the ACE-MAESTRO partial columns were found to be smaller than expected for ozone and larger than expected for NO2.
URI: http://hdl.handle.net/1807/17301
Appears in Collections:Doctoral
Department of Physics - Doctoral theses

Files in This Item:

File Description SizeFormat
Fraser_Annemarie_C_200811_PhD_thesis.pdf15.63 MBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft