test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Master >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/17432

Title: Stereoscopic PIV In Steady Flow Through a Bileaflet Mechanical Heart Valve
Authors: Hutchison, Christopher
Advisor: Ethier, C. Ross
Sullivan, Pierre E.
Department: Mechanical and Industrial Engineering
Keywords: stereoscopic particle image velocimetry
bileaflet mechanical heart valve flow
PIV image dewarping
Issue Date: 14-Jul-2009
Abstract: The tendency of aortic bileaflet mechanical heart valves (BiMHVs) to promote thrombosis has been well documented in the literature. The relationship of thrombosis to valve fluid dynamics has prompted numerous studies of aortic BiMHV flow. In this study, steady flow was investigated downstream of a model Carbomedics No. 25 BiMHV in an axisymmetric aortic sinus using stereoscopic particle image velocimetry (SPIV). The Reynolds number based on inlet diameter was 7600, and the measurement plane was perpendicular to the leaflet axes at the centerline of the aortic sinus. The typical formation of three jets was observed: the upper and lower lateral orifice jets, and the central jet. Flow separation from the valve ring was seen, and large scale vortices were identified in both the upper and lower sinus regions. An asymmetry in the reverse flow was found, and possible causes were discussed. All three jets were seen to decay similarly to free rectangular jets, with zero decay initially, followed by a 'linear' decay rate in which Umax^2~X. The central jet was also seen to be self similar in the linear decay region. Analysis of the out-of-plane velocity yielded two alternate explanations of streamwise vortex (i.e. Wx) structure, with either a four-cell or an eight-cell streamwise vortex structure being present in the mean velocity field. Organization of large scale three dimensional flow structures was thus apparent. Calculation of in-plane Reynolds stresses showed that values were highest in the outer shear layers of the lateral orifice jets. Elevated Reynolds shear stress values were also found in the leaflet wake regions, and the shear layers of the central jet.
URI: http://hdl.handle.net/1807/17432
Appears in Collections:Master
Department of Mechanical & Industrial Engineering - Master theses

Files in This Item:

File Description SizeFormat
Hutchison_Christopher_J_200903_MASc_thesis.pdf28.8 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft