test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/17785

Title: The Converse of Abel's Theorem
Authors: Kissounko, Veniamine
Advisor: Khovanskii, Askold
Department: Mathematics
Issue Date: 24-Sep-2009
Abstract: In my thesis I investigate an algebraization problem. The simplest, but already nontrivial, problem in this direction is to find necessary and sufficient conditions for three graphs of smooth functions on a given interval to belong to an algebraic curve of degree three. The analogous problems were raised by Lie and Darboux in connection with the classification of surfaces of double translation; by Poincare and Mumford in connection with the Schottky problem; by Griffiths and Henkin in connection with a converse of Abel’s theorem; by Bol and Akivis in the connection with the algebraization problem in the theory of webs. Interestingly, the complex-analytic technique developed by Griftiths and Henkin for the holomorphic case failed to work in the real smooth setting. In the thesis I develop a technique of, what I call, complex moments. Together with a simple differentiation rule it provides a unified approach to all the algebraization problems considered so far (both complex-analytic and real smooth). As a result I prove two variants (’polynomial’ and ’rational’) of a converse of Abel’s theorem which significantly generalize results of Griffiths and Henkin. Already the ’polynomial’ case is nontrivial leading to a new relation between the algebraization problem in the theory of webs and the converse of Abel’s theorem. But, perhaps, the most interesting is the rational case as a new phenomenon occurs: there are forms with logarithmic singularities on special algebraic varieties that satisfy the converse of Abel’s theorem. In the thesis I give a complete description of such varieties and forms.
URI: http://hdl.handle.net/1807/17785
Appears in Collections:Doctoral
Department of Mathematics - Doctoral theses

Files in This Item:

File Description SizeFormat
Kissounko_Veniamine_A_200906_PhD_thesis.pdf670.53 kBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft