test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/17806

Title: The Morphology of Local Galaxies and the Basis of the Hubble Sequence
Authors: Nair, Preethi
Advisor: Abraham, Roberto
Department: Astronomy and Astrophysics
Keywords: Galaxy Morphology
Bar
Ring
Lens
AGN
Bimodality
Issue Date: 25-Sep-2009
Abstract: The goal of galaxy classification is to understand the physical basis for the wide range in shapes and structures exhibited by galaxies in the local and high redshift universe. We present a catalog of visually classified galaxies from the Sloan Digital Sky Survey with detailed morphological classifications including bars, rings, lenses, tails, warps, dustlanes, arm flocculence and multiplicity (so called ’fine structure’). This thesis explores the importance of galaxy morphology by probing its relationship to physical properties. Our analysis includes an investigation of correlations between fine structures and AGN activity. This sample defines a comprehensive local galaxy sample which we use to study the low redshift universe both qualitatively and quantitatively. We find the stellar mass appears to be a defining characteristic of a galaxy. The break in most correlations of physical properties with morphology is due to a lack of late type, massive disk galaxies. Our analysis of the size-mass relations of galaxies as a function of morphology (T-Type) has revealed many interesting connections. We find the size-mass relation of Sa, Sab, Sb, and Sbc galaxies bifurcates into two families of objects as one moves down the sequence such that the high concentration branch exhibits a similar slope to low concentration early type (E) galaxies suggesting a closer than expected physical (possibly evolutionary) connection between the two populations. We find bar fraction is bimodal with respect to mass (at 3 x 10^10 M) and color (at g - r ∼ 0.55). The dependence is seen to intimately depend on central concentration such that objects below the transition mass with low concentrations have a higher bar fraction than objects above the transition mass which have high bar fractions for high concentration systems. In addition we find the presence of an AGN alters the behavior and abundance of barred/ringed galaxies in the high mass peak such that the bar/ring fractions increase with mass in nonactive galaxies whereas they decrease with mass in active galaxies. AGN fractions are also decreasing in the same mass range possibly implying a positive correlation between fine structure and ring formation.
URI: http://hdl.handle.net/1807/17806
Appears in Collections:Doctoral
Department of Astronomy & Astrophysics - Doctoral theses

Files in This Item:

File Description SizeFormat
Nair_Preethi_200906_PhD_thesis.pdf89.51 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft