test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/17813

Title: Mechanisms of Fatty Acid Induced Decrease in β-cell Function
Authors: Oprescu, Andrei Ioan
Advisor: Giacca, Adria
Department: Medical Science
Keywords: Type 2 Diabetes
Oxidative Stress
Free Fatty Acids
Lipotoxicity
Beta-cell
Issue Date: 25-Sep-2009
Abstract: An important mechanism involved in the pathogenesis of type 2 diabetes is elevation of plasma free fatty acids which induce insulin resistance and may impair both β-cell function and mass (β-cell lipotoxicity). The objective of my thesis was to investigate the role of oxidative stress in β-cell lipotoxicity, using in vivo, ex vivo, and in vitro models. I used in vivo models of 48h i.v. oleate or olive oil infusion in Wistar rats followed by hyperglycemic clamps, or islet secretion studies ex vivo, and in vitro models of 48h exposure to oleate in isolated islets. My first study showed that 48h oleate infusion decreased the insulin response to a hyperglycemic clamp, an effect prevented by coinfusion of the antioxidants N-acetylcysteine and taurine. Similar to the findings in vivo, 48h infusion of oleate decreased glucose stimulated insulin secretion (GSIS) ex vivo, and induced oxidative stress in isolated islets, effects prevented by coinfusion of the antioxidants N-acetylcysteine, taurine, or tempol. Islets exposed to oleate or palmitate showed a decreased insulin response to high glucose and increased levels of oxidative stress, effects prevented by taurine. Therefore, my data are the first demonstration that oxidative stress plays a role in the decrease in β-cell secretory function induced by prolonged exposure to FFA, in vitro and in vivo. My second study addressed downstream effects of oxidative stress involving inflammation. A 48h infusion of oleate or olive oil decreased β-cell function during a hyperglycemic clamp, an effect prevented by coinfusion of the IKKβ inhibitor salicylate. GSIS in isolated islets was impaired by olive oil or oleate and restored by salicylate. These results suggest a potential role for both oxidative stress and inflammation in lipid-induced β-cell dysfunction. My third study addressed downstream effects of oxidative stress involving β-cell insulin signalling. A 48h infusion of oleate or olive oil decreased β-cell function during a hyperglycemic clamp, an effect prevented by coinfusion of the tyrosine phosphatase inhibitor bisperoxovanadate. GSIS in isolated islets was impaired by olive oil or oleate and restored by bisperoxovanadate, suggesting a role of FFA in decreasing β-cell function by induction of β-cell insulin resistance.
URI: http://hdl.handle.net/1807/17813
Appears in Collections:Doctoral
Institute of Medical Science - Doctoral theses

Files in This Item:

File Description SizeFormat
Oprescu_Andrei_I_200906_PhD_thesis.pdf2.57 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft