test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/17822

Title: Influence of Invasive Species, Climate Change and Population Density on Life Histories and Mercury Dynamics of Two Coregonus Species
Authors: Rennie, Michael
Advisor: Sprules, W. Gary
Johnson, Timothy
Department: Ecology and Evolutionary Biology
Keywords: Dreissena
multiple stressors
food web
trophic disruptor
global warming
Issue Date: 25-Sep-2009
Abstract: Non-indigenous species can profoundly alter the ecosystems they invade and impact local economies. Growth and body condition declines of commercially fished Great Lakes lake whitefish coincide with the establishment of non-native dreissenid mussels and the cladoceran Bythotrephes longimanus. Declines in lake herring abundance—a key prey item for other commercially important species—have also been reported. Though additional stressors such as climate change may have contributed to changes in coregonid populations, they have not been thoroughly evaluated. Here, I present data that condition and contaminant declines in coregonids are associated with increasing density or warming climate, but growth declines in lake whitefish are likely due to ecosystem changes associated with dreissenids and Bythotrephes. In South Bay, Lake Huron, changes in lake whitefish diet composition and stable isotope signatures were consistent with increased reliance on nearshore resources after dreissenid establishment; lake whitefish occupied shallower habitats and experienced declines in mean diet energy densities post-dreissenid invasion. Growth of South Bay lake whitefish declined after environmental effects were statistically removed, whereas condition declines were explained best by changes in lake whitefish density. Among four lake whitefish populations, growth declined after dreissenids established, but not in uninvaded reference populations. Growth also declined among four lake whitefish populations after the establishment of Bythotrephes relative to reference populations. In contrast with growth, condition of lake whitefish did not change as a result of dreissenid or Bythotrephes invasion. Bioenergetic models revealed that activity rates increased and conversion efficiencies decreased in lake whitefish populations exposed to dreissenids, despite higher consumption rates in populations with dreissenids present. Condition declines among many lake whitefish and lake herring populations (and declines in mercury among herring populations) reflected regional differences and were not related to the presence of Bythotrephes or Mysis relicta. Declines in condition were more pronounced in northwest Ontario populations where climate has changed more dramatically than in southern Ontario. This work suggests that projected range expansions of dreissenid mussels and Bythotrephes will likely affect native fisheries, and their effect on these fisheries may be exacerbated by declining fish condition associated with climate change.
URI: http://hdl.handle.net/1807/17822
Appears in Collections:Doctoral
Department of Ecology & Evolutionary Biology - Doctoral theses

Files in This Item:

File Description SizeFormat
Rennie_Michael_D_200906_PhD_thesis.pdf9.64 MBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.