test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Master >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/18250

Title: Syntaxin-1A Inhibits Cardiac ATP-Sensitive Potassium Channels by Direct Interaction with Distinct Domains within Sulphonylurea Receptor 2A Nucleotide-Binding Folds
Authors: Chao, Christin Chih Ting
Advisor: Gaisano, Herbert Young
Feng, Zhong-Ping
Department: Physiology
Keywords: Syntaxin-1A
ATP-sensitive potassium channel
sulfonylurea receptor
Issue Date: 13-Jan-2010
Abstract: KATP channels couple cell metabolic status to the membrane excitability by sensing the cytoplasmic ATP/ADP ratio. Present studies examined how conserved motifs (Walker A (WA), signature sequence (L), and Walker B (WB)) within each NBF of SUR2A bind to Syn-1A to affect its actions on cardiac KATP channels. In vitro binding experiments illustrated that Syn-1A binds cardiac SUR2A at WA and L of NBF-1 and WA, L, and WB of NBF-2. Electrophysiology experiments on stably expressing SUR2A/Kir6.2 cell-lines showed that only L and WB of NBF-1 and all three NBF-2 motifs could abrogate the inhibitory effect of Syn-1A on SUR2A/KATP channels. These results lead me to hypothesize that more independent motif in NBF-2 can bind and abrogate Syn-1A’s inhibition than NBF-1 on SUR2A/KATP channels. A corollary postulate is that Syn-1A acts as a scaffold to secure the NBF-1 and -2 in dimer conformation required for SUR2A to modulate Kir6.2 gating.
URI: http://hdl.handle.net/1807/18250
Appears in Collections:Master
Department of Physiology - Master theses

Files in This Item:

File Description SizeFormat
Chao_Christin_CT_200911_MSc_thesis.pdf6.44 MBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.