test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Master >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/18264

Title: Healing of Calvarial Wounds Created by Er:YAG Laser Irradiation in Comparison with Conventional Mechanical and Femtosecond Laser Ablation in Presence or Absence of BMPs
Authors: Cloutier, Martin
Advisor: Clokie, Cameron
Department: Dentistry
Keywords: laser
bone
Issue Date: 13-Jan-2010
Abstract: The Er:YAG laser and the USPL are the most promising when considering the previous study results and their physical characteristics. This investigation compared the healing of various laser ablation units versus conventional mechanical cutting to explore the future applications for bone surgery and the effects when combined with rhBMP-7. A full-thickness circular defect was created on the parietal bones of mice for all the groups. Hard tissue healing was assessed using a microcomputerized tomography. Wound closure analyses suggested that the femtosecond laser created wounds displayed slightly healing delay in closure over the healing period when compared to mechanical instrumentation. The Er:YAG laser showed a healing rate similar to that of the mechanically ablated groups. In summary, femtosecond and Er:YAG lasers are two modalities suitable for bone ablation comparable to mechanical instrumentation.
URI: http://hdl.handle.net/1807/18264
Appears in Collections:Master
Faculty of Dentistry - Master theses

Files in This Item:

File Description SizeFormat
Cloutier_Martin_200911_MSc_thesis.pdf1.73 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft