test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/19033

Title: Almost CR Quantization via the Index of Transversally Elliptic Dirac Operators
Authors: Fitzpatrick, Daniel
Advisor: Meinrenken, Eckhard
Department: Mathematics
Keywords: Quantization
Contact geometry
Transversally elliptic operators
Equivariant index theory
Issue Date: 18-Feb-2010
Abstract: Let $M$ be a smooth compact manifold equipped with a co-oriented subbundle $E\subset TM$. We suppose that a compact Lie group $G$ acts on $M$ preserving $E$, such that the $G$-orbits are transverse to $E$. If the fibres of $E$ are equipped with a complex structure then it is possible to construct a $G$-invariant Dirac operator $\dirac$ in terms of the resulting almost CR structure. We show that there is a canonical equivariant differential form with generalized coefficients $\mathcal{J}(E,X)$ defined on $M$ that depends only on the $G$-action and the co-oriented subbundle $E$. Moreover, the group action is such that $\dirac$ is a $G$-transversally elliptic operator in the sense of Atiyah \cite{AT}. Its index is thus defined as a generalized function on $G$. Beginning with the equivariant index formula of Paradan and Vergne \cite{PV3}, we obtain an index formula for $\dirac$ computed as an integral over $M$ that is free of choices and growth conditions. This formula necessarily involves equivariant differential forms with generalized coefficients and we show that the only such form required is the canonical form $\mathcal{J}(E,X)$. In certain cases the index of $\dirac$ can be interpreted in terms of a CR analogue of the space of holomorphic sections, allowing us to view our index formula as a character formula for the $G$-equivariant quantization of the almost CR manifold $(M,E)$. In particular, we obtain the ``almost CR'' quantization of a contact manifold, in a manner directly analogous to the almost complex quantization of a symplectic manifold.
URI: http://hdl.handle.net/1807/19033
Appears in Collections:Doctoral
Department of Mathematics - Doctoral theses

Files in This Item:

File Description SizeFormat
Fitzpatrick_Daniel_S_200911_PhD_thesis.pdf756.69 kBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.