test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/19053

Title: Improvements to Field-Programmable Gate Array Design Efficiency using Logic Synthesis
Authors: Ling, Andrew Chaang
Advisor: Brown, Stephen
Department: Electrical and Computer Engineering
Keywords: Logic Synthesis
Computer-Aided Design
Field-Programmable Gate Array
Boolean Satisfiability
Binary-Decision Diagram
Issue Date: 18-Feb-2010
Abstract: As Field-Programmable Gate Array (FPGA) capacity can now support several processors on a single device, the scalability of FPGA design tools and methods has emerged as a major obstacle for the wider use of FPGAs. For example, logic synthesis, which has traditionally been the fastest step in the FPGA Computer-Aided Design (CAD) flow, now takes several hours to complete in a typical FPGA compile. In this work, we address this problem by focusing on two areas. First, we revisit FPGA logic synthesis and attempt to improve its scalability. Specifically, we look at a binary decision diagram (BDD) based logic synthesis flow, referred to as FBDD, where we improve its runtime by several fold with a marginal impact to the resulting circuit area. We do so by speeding up the classical cut generation problem by an order-of-magnitude which enables its application directly at the logic synthesis level. Following this, we introduce a guided partitioning technique using a fast global budgeting formulation, which enables us to optimize individual “pockets” within the circuit without degrading the overall circuit performance. By using partitioning we can significantly reduce the solution space of the logic synthesis problem and, furthermore, open up the possibility of parallelizing the logic synthesis step. The second area we look at is the area of Engineering Change Orders (ECOs). ECOs are incremental modifications to a design late in the design flow. This is beneficial since it is minimally disruptive to the existing circuit which preserves much of the engineering effort invested previously in the design. In a design flow where most of the steps are fully automated, ECOs still remain largely a manual process. This can often tie up a designer for weeks leading to missed project deadlines which is very detrimental to products whose life-cycle can span only a few months. As a solution to this, we show how we can leverage existing logic synthesis techniques to automatically modify a circuit in a minimally disruptive manner. This can significantly reduce the turn-around time when applying ECOs.
URI: http://hdl.handle.net/1807/19053
Appears in Collections:Doctoral
The Edward S. Rogers Sr. Department of Electrical & Computer Engineering - Doctoral theses

Files in This Item:

File Description SizeFormat
Ling_Andrew_C_200911_PhD_thesis.pdf1.64 MBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft