test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/19062

Title: Existence of Critical Points for the Ginzburg-Landau Functional on Riemannian Manifolds
Authors: Mesaric, Jeffrey Alan
Advisor: Jerrard, Robert
Department: Mathematics
Keywords: partial differential equations
Ginzburg-Landau
Issue Date: 19-Feb-2010
Abstract: In this dissertation, we employ variational methods to obtain a new existence result for solutions of a Ginzburg-Landau type equation on a Riemannian manifold. We prove that if $N$ is a compact, orientable 3-dimensional Riemannian manifold without boundary and $\gamma$ is a simple, smooth, connected, closed geodesic in $N$ satisfying a natural nondegeneracy condition, then for every $\ep>0$ sufficiently small, $\exists$ a critical point $u^\ep\in H^1(N;\mathbb{C})$ of the Ginzburg-Landau functional \bd\ds E^\ep(u):=\frac{1}{2\pi |\ln\ep|}\int_N |\nabla u|^2+\frac{(|u|^2-1)^2}{2\ep^2}\ed and these critical points have the property that $E^\ep(u^\ep)\rightarrow\tx{length}(\gamma)$ as $\ep\rightarrow 0$. To accomplish this, we appeal to a recent general asymptotic minmax theorem which basically says that if $E^\ep$ $\Gamma$-converges to $E$ (not necessarily defined on the same Banach space as $E^\ep$), $v$ is a saddle point of $E$ and some additional mild hypotheses are met, then there exists $\ep_0>0$ such that for every $\ep\in(0,\ep_0),E^\ep$ possesses a critical point $u^\ep$ and $\lim_{\ep\rightarrow 0}E^\ep(u^\ep)=E(v)$. Typically, $E$ is only lower semicontinuous, therefore a suitable notion of saddle point is needed. Using known results on $\mathbb{R}^3$, we show the Ginzburg-Landau functional $E^\ep$ defined above $\Gamma$-converges to a functional $E$ which can be thought of as measuring the arclength of a limiting singular set. Also, we verify using regularity theory for almost-minimal currents that $\gamma$ is a saddle point of $E$ in an appropriate sense.
URI: http://hdl.handle.net/1807/19062
Appears in Collections:Doctoral
Department of Mathematics - Doctoral theses

Files in This Item:

File Description SizeFormat
Mesaric_Jeffrey_A_200911_PhD_thesis.pdf404.68 kBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft