test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/19176

Title: Microstructural Strengthening Mechanisms in Micro-truss Periodic Cellular Metals
Authors: Bouwhuis, Brandon
Advisor: Hibbard, Glenn D.
Department: Materials Science and Engineering
Keywords: Cellular metals
Nanocrystalline metal
In-situ work hardening
Deformation forming
Issue Date: 1-Mar-2010
Abstract: This thesis investigates the effect of microstructural strengthening mechanisms on the overall mechanical performance of micro-truss periodic cellular metals (PCMs). Prior to the author’s work, the primary design considerations of micro-truss PCMs had been topological issues, i.e. the architectural arrangement of the load-supporting ligaments. Very little attention had been given to investigate the influence of microstructural effects within the cellular ligaments. Of the four broad categories of strengthening mechanisms in metals, only solute and second phase strengthening had previously been used in micro-trusses; the potential for strengthening micro-truss materials by work-hardening or grain size reduction had not been addressed. In order to utilize these strengthening mechanisms in micro-truss PCMs, two issues needed to be addressed. First, the deformation-forming method used to produce the micro-trusses was analyzed in order to map the fabrication-induced (in-situ) strain as well as the range of architectures that could be reached. Second, a new compression testing method was developed to simulate the properties of the micro-truss as part of a common functional form, i.e. as the core of a light-weight sandwich panel, and test the effectiveness of microstructural strengthening mechanisms without the influence of typical high-temperature sandwich panel joining processes, such as brazing. The first strengthening mechanism was achieved by controlling the distribution of plastic strain imparted to the micro-truss struts during fabrication. It was shown that this strain energy can lead to a factor of three increase in compressive strength without an associated weight penalty. An analytical model for the critical inelastic buckling stress of the micro-truss struts during uniaxial compression was developed in terms of the axial flow stress during stretch forming fabrication. The second mechanism was achieved by electrodeposition of a high-strength nanocrystalline metal sleeve around the cellular ligaments, producing new types of hybrid nanocrystalline cellular metals. It was shown that despite the added mass, the nanocrystalline sleeves could increase the weight-specific strength of micro-truss hybrids. An isostrain model was developed based on the theoretical behaviour of a nanocrystalline metal tube network in order to predict the compressive strength of the hybrid materials.
URI: http://hdl.handle.net/1807/19176
Appears in Collections:Doctoral
Department of Materials Science & Engineering - Doctoral theses

Files in This Item:

File Description SizeFormat
Bouwhuis_Brandon_A_200911_PhD_thesis.pdf8.71 MBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.