test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/19217

Title: A Population Based Approach to Diabetes Mellitus Risk Prediction: Methodological Advances and Practical Applications
Authors: Rosella, Laura Christina Antonia
Advisor: Manuel, Douglas G.
Mustard, Cameron
Department: Dalla Lana School of Public Health
Keywords: diabetes
population risk prediction
Issue Date: 2-Mar-2010
Abstract: Since the publication of the Framingham algorithm for heart disease, tools that predict disease risk have been increasingly integrated into standards of practice. The utility of algorithms at the population level can serve several purposes in health care decision-making and planning. A population-based risk prediction tool for Diabetes Mellitus (DM) can be particularly valuable for public health given the significant burden of diabetes and its projected increase in the coming years. This thesis addresses various aspects related to diabetes risk in addition to incorporating methodologies that advance the practice of epidemiology. The goal of this thesis is to demonstrate and inform the methods of population-based diabetes risk prediction. This is studied in three components: (I) development and validation of a diabetes population risk tool, (II) measurement and (III) obesity risk. Analytic methods used include prediction survival modeling, simulation, and multilevel growth modeling. Several types of data were analyzed including population healthy survey, health administrative, simulation and longitudinal data. The results from this thesis reveal several important findings relevant to diabetes, obesity, population-based risk prediction, and measurement in the population setting. In this thesis a model (Diabetes Population Risk Tool or DPoRT) to predict 10-year risk for diabetes, which can be applied using commonly-collected national survey data was developed and validated. Conclusions drawn from the measurement analysis can inform research on the influence of measurement properties (error and type) on modeling and statistical prediction. Furthermore, the use of new modeling strategies to model change of body mass index (BMI) over time both enhance our understanding of obesity and diabetes risk and demonstrate an important methodology for future epidemiological studies. Epidemiologists are in need of innovative and accessible tools to assess population risk making these types of risk algorithms an important scientific advance. Population-based prediction models can be used to improve health planning, explore the impact of prevention strategies, and enhance our understanding of the distribution of diabetes in the population. This work can be extended to future studies which develop tools for disease planning at the population level in Canada and to enrich the epidemiologic literature on modeling strategies.
URI: http://hdl.handle.net/1807/19217
Appears in Collections:Doctoral
Dalla Lana School of Public Health - Doctoral theses

Files in This Item:

File Description SizeFormat
Rosella_Laura_C_200911_PhD_thesis.pdf2.63 MBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft