test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/19240

Title: First Passage Times: Integral Equations, Randomization and Analytical Approximations
Authors: Valov, Angel
Advisor: Jaimungal, Sebastian
Alexander, Kreinin
Department: Statistics
Keywords: first passage time
Brownian motion
integral equations
hitting time
boundary function
Issue Date: 3-Mar-2010
Abstract: The first passage time (FPT) problem for Brownian motion has been extensively studied in the literature. In particular, many incarnations of integral equations which link the density of the hitting time to the equation for the boundary itself have appeared. Most interestingly, Peskir (2002b) demonstrates that a master integral equation can be used to generate a countable number of new integrals via its differentiation or integration. In this thesis, we generalize Peskir's results and provide a more powerful unifying framework for generating integral equations through a new class of martingales. We obtain a continuum of new Volterra type equations and prove uniqueness for a subclass. The uniqueness result is then employed to demonstrate how certain functional transforms of the boundary affect the density function. Furthermore, we generalize a class of Fredholm integral equations and show its fundamental connection to the new class of Volterra equations. The Fredholm equations are then shown to provide a unified approach for computing the FPT distribution for linear, square root and quadratic boundaries. In addition, through the Fredholm equations, we analyze a polynomial expansion of the FPT density and employ a regularization method to solve for the coefficients. Moreover, the Volterra and Fredholm equations help us to examine a modification of the classical FPT under which we randomize, independently, the starting point of the Brownian motion. This randomized problem seeks the distribution of the starting point and takes the boundary and the (unconditional) FPT distribution as inputs. We show the existence and uniqueness of this random variable and solve the problem analytically for the linear boundary. The randomization technique is then drawn on to provide a structural framework for modeling mortality. We motivate the model and its natural inducement of 'risk-neutral' measures to price mortality linked financial products. Finally, we address the inverse FPT problem and show that in the case of the scale family of distributions, it is reducible to nding a single, base boundary. This result was applied to the exponential and uniform distributions to obtain analytical approximations of their corresponding base boundaries and, through the scaling property, for a general boundary.
URI: http://hdl.handle.net/1807/19240
Appears in Collections:Doctoral
Department of Statistics - Doctoral theses

Files in This Item:

File Description SizeFormat
Valov_Angel_V_200911_PhD_thesis.pdf847.9 kBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.